Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant J ; 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608130

RESUMO

The determination of physiological tolerance ranges of photosynthetic species and of the biochemical mechanisms underneath are fundamental to identify target processes and metabolites that will inspire enhanced plant management and production for the future. In this context, the terrestrial green algae within the genus Prasiola represent ideal models due to their success in harsh environments (polar tundras) and their extraordinary ecological plasticity. Here we focus on the outstanding Prasiola antarctica and compare two natural populations living in very contrasting microenvironments in Antarctica: the dry sandy substrate of a beach and the rocky bed of an ephemeral freshwater stream. Specifically, we assessed their photosynthetic performance at different temperatures, reporting for the first time gnsd values in algae and changes in thylakoid metabolites in response to extreme desiccation. Stream population showed lower α-tocopherol content and thicker cell walls and thus, lower gnsd and photosynthesis. Both populations had high temperatures for optimal photosynthesis (around +20°C) and strong constitutive tolerance to freezing and desiccation. This tolerance seems to be related to the high constitutive levels of xanthophylls and of the cylindrical lipids di- and tri-galactosyldiacylglycerol in thylakoids, very likely related to the effective protection and stability of membranes. Overall, P. antarctica shows a complex battery of constitutive and plastic protective mechanisms that enable it to thrive under harsh conditions and to acclimate to very contrasting microenvironments, respectively. Some of these anatomical and biochemical adaptations may partially limit photosynthesis, but this has a great potential to rise in a context of increasing temperature.

2.
Physiol Plant ; 175(6): e14073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38148218

RESUMO

Terrestrialization by photosynthetic eukaryotes took place in the two branches of green microalgae: Chlorophyta and Charophyta. Within the latter, the paraphyletic streptophytic algae divide into two clades. These are named Klebsormidiophyceae-Chlorokybophyceae-Mesostigmatophyceae (KCM), which is the oldest, and Zygnematophyceae-Coleochaetophyceae-Charophyceae (ZCC), which contains the closest relatives of vascular plants. Terrestrialization required the emergence of adaptations in response to new challenges, such as irradiance, temperature oscillations and water deprivation. In this study, we evaluated lipid composition in species representative of distinct phylogenetic clusters within Charophyta and Chlorophyta. We aim to study whether the inherent thylakoid lipid composition, as well as its adaptability in response to desiccation, were fundamental factors for the evolutionary history of terrestrial plants. The results showed that the lipid composition was similar to that found in flowering land plants, differing only in betaine lipids. Likewise, the largest constitutive pool of oligogalactolipids (OGL) was found only in the fully desiccation-tolerant species Klebsormidium nitens. After desiccation, the content of polar lipids decreased in all species. Conversely, the content of OGL increased, particularly trigalactosyldiacylglycerol and tetragalactosyldiacylglycerol in the ZCC clade. The analysis of the molecular species composition of the newly formed OGL may suggest a different biosynthetic route for the KCM and ZCC clades. We speculate that the appearance of a new OGL synthesis pathway, which eventually arose during the streptophyte evolutionary process, endowed algae with a much more dynamic regulation of thylakoid composition in response to stress, which ultimately contributed to the colonization of terrestrial habitats.


Assuntos
Carofíceas , Clorófitas , Estreptófitas , Filogenia , Dessecação , Plantas , Estreptófitas/genética , Carofíceas/fisiologia , Clorófitas/metabolismo , Lipídeos
3.
Plants (Basel) ; 12(6)2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36986993

RESUMO

Many species of Alternaria are important pathogens that cause plant diseases and postharvest rots. They lead to significant economic losses in agriculture and affect human and animal health due to their capacity to produce mycotoxins. Therefore, it is necessary to study the factors that can result in an increase in A. alternata. In this study, we discuss the mechanism by which phenol content protects from A. alternata, since the red oak leaf cultivar (containing higher phenols) showed lower invasion than the green one, Batavia, and no mycotoxin production. A climate change scenario enhanced fungal growth in the most susceptible cultivar, green lettuce, likely because elevated temperature and CO2 levels decrease plant N content, modifying the C/N ratio. Finally, while the abundance of the fungi was maintained at similar levels after keeping the lettuces for four days at 4 °C, this postharvest handling triggered TeA and TEN mycotoxin synthesis, but only in the green cultivar. Therefore, the results demonstrated that invasion and mycotoxin production are cultivar- and temperature-dependent. Further research should be directed to search for resistant cultivars and effective postharvest strategies to reduce the toxicological risk and economic losses related to this fungus, which are expected to increase in a climate change scenario.

4.
Plants (Basel) ; 11(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36145784

RESUMO

Triticum aestivum L. cv. Gazul is a spring wheat widely cultivated in Castilla y León (Spain). Potted plants were grown in a scenario emulating the climate change environmental conditions expected by the end of this century, i.e., with elevated CO2 and high temperature under two water deficit regimes: long (LWD) and terminal (TWD). Changes in biomass and morphology, the content of proline (Pro), ascorbate (AsA) and glutathione (GSH), and enzymatic antioxidant activities were analyzed in flag leaves and ears. Additionally, leaf gas exchange was measured. LWD caused a decrease in biomass and AsA content but an increase in Pro content and catalase and GSH reductase activities in flag leaves, whereas TWD produced no significant changes. Photosynthesis was enhanced under both water deficit regimes. Increase in superoxide dismutase activity and Pro content was only observed in ears under TWD. The lack of a more acute effect of LWD and TWD on both organs was attributed to the ROS relieving effect of elevated CO2. Gazul acted as a drought tolerant variety with anisohydric behavior. A multifactorial analysis showed better adaptation of ears to water deficit than flag leaves, underlining the importance of this finding for breeding programs to improve grain yield under future climate change.

5.
Planta ; 256(2): 20, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35751708

RESUMO

MAIN CONCLUSION: Growth was not strictly linked to photosynthesis performance under salinity conditions in quinoa. Other key traits, which were varieties-specific, rather than photosynthesis explained better growth performance. Phenotyping for salinity stress tolerance in quinoa is of great interest to select traits contributing to overall salinity tolerance and to understand the response mechanisms to salinity at a whole plant level. The objective of this work was to dissect the responses of specific traits and analyse relations between these traits to better understand growth response under salinity conditions in quinoa. Growth response to salinity was mostly related to differences in basal values of biomass, being reduced the most in plants with higher basal biomass. Regarding the relationship between growth and specific traits, in Puno variety, better photosynthetic performance was related to a better maintenance of growth. Nevertheless, in the rest of the varieties other traits rather than photosynthesis could better explain growth response. In this way, the development of succulence in F-16 and Collana varieties, also the osmotic adjustment but in smaller dimensions in Pasankalla, Marisma and S-15-15 helped to maintain better growth. Besides, smaller increases of Cl- could have caused a limited nitrate uptake reducing more growth in Vikinga. Ascorbate was considered a key trait as a noticeable fall of it was also related to higher reductions in growth in Titicaca. These results suggest that, due to the genetic variability of quinoa and the complexity of salinity tolerance, no unique and specific traits should be taken into consideration when using phenotyping for analysing salinity tolerance in quinoa.


Assuntos
Chenopodium quinoa , Tolerância ao Sal , Chenopodium quinoa/fisiologia , Fotossíntese , Salinidade , Estresse Salino , Tolerância ao Sal/genética
6.
J Plant Physiol ; 254: 153284, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33010664

RESUMO

The response of plant species to external factors depends partly on the interaction with the environment and with the other species that coexist in the same ecosystem. Several studies have investigated the main traits that determine the competitive capacity of plant species, and although the relevance of the traits is not clear, traits both from belowground and aboveground have been observed. In this paper, we grew Trifolium pratense and Agrostis capillaris in intra- and interspecific competition, analyzing the photosynthetic metabolism and nitrogen uptake, among other variables. The results indicated that T. pratense possesses better competition ability due to the higher competitive performance for soil resources compared to A. capillaris, explained by a higher root biomass and a higher nitrogen uptake rate in the former than in the latter. These traits permitted T. pratense to show higher photosynthetic rate than A. capillaris when both species were grown in mixture. Furthermore, the interspecific competition provoked A. capillaris to activate its antioxidant metabolism, through SOD activity, to detoxify the reactive oxygen species generated due to its lower capacity for using the photochemical energy absorbed. In this experiment, we conclude that the competitiveness seems to be more related with soil resources competition than with light competition, and that the photosynthetic rate decline in A. capillaris is more a secondary effect as a consequence of nitrogen limitation.


Assuntos
Agrostis/fisiologia , Pradaria , Trifolium/fisiologia , Agrostis/crescimento & desenvolvimento , Agrostis/metabolismo , Clorofila/metabolismo , Peroxidação de Lipídeos , Nitrogênio/metabolismo , Fotossíntese/fisiologia , Transpiração Vegetal/fisiologia , Solo , Superóxido Dismutase/metabolismo , Trifolium/crescimento & desenvolvimento , Trifolium/metabolismo
7.
Molecules ; 24(13)2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31266247

RESUMO

A chemiluminescence probe for singlet oxygen 1O2 (SOCL) was investigated in phosphate buffer saline (PBS), either in the absence of proteins or containing bovine serum albumin (BSA). In the protein-free PBS, the reactivity of SOCL for methylene blue (MB)-photosensitized 1O2 was found to be moderate or low. The reaction yield increased with temperature and/or concentration of dissolved molecular oxygen. Unexpectedly, the presence of BSA boosted both the emissive nature and the thermal stability of the phenoxy-dioxetane intermediate formed in the chemiexcitation pathway. Isothermal titration calorimetry showed that SOCL has a moderate binding affinity for BSA and that entropy forces drive the formation of the SOCL-BSA complex. A model with two identical and independent binding sites was used to fit the binding isotherm data. Co-operative binding was observed when MB was present. Local viscosity factors and/or conformational restrictions of the BSA-bound SOCL phenoxy-dioxetane were proposed to contribute to the formation of the highly emissive benzoate ester during the chemically initiated electron exchange luminescence (CIEEL) process. These results led us to conclude that hydrophobic interactions of the SOCL with proteins can modify the emissive nature of its phenoxy-dioxetane, which should be taken into account when using SOCL or its cell-penetrating peptide derivative in living cells.


Assuntos
Medições Luminescentes , Modelos Químicos , Modelos Moleculares , Sondas Moleculares/química , Soroalbumina Bovina/química , Oxigênio Singlete/química , Animais , Bovinos
8.
Bull Math Biol ; 82(1): 3, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31919660

RESUMO

The asymptotes and transition points of the net CO2 assimilation (A/Ci) rate curves of the steady-state Farquhar-von Caemmerer-Berry (FvCB) model for leaf photosynthesis of C3 plants are examined in a theoretical study, which begins from the exploration of the standard equations of hyperbolae after rotating the coordinate system. The analysis of the A/Ci quadratic equations of the three limitation states of the FvCB model-abbreviated as Ac, Aj and Ap-allows us to conclude that their oblique asymptotes have a common slope that depends only on the mesophyll conductance to CO2 diffusion (gm). The limiting values for the transition points between any two states of the three limitation states c, j and p do not depend on gm, and the results are therefore valid for rectangular and non-rectangular hyperbola equations of the FvCB model. The analysis of the variation of the slopes of the asymptotes with gm casts doubts about the fulfilment of the steady-state conditions, particularly, when the net CO2 assimilation rate is inhibited at high CO2 concentrations. The application of the theoretical analysis to extended steady-state FvCB models, where the hyperbola equations of Ac, Aj and Ap are modified to accommodate nitrogen assimilation and amino acids export via the photorespiratory pathway, is also discussed.


Assuntos
Fotossíntese , Folhas de Planta , Difusão , Frutas/metabolismo , Conceitos Matemáticos , Modelos Biológicos , Fenômenos Físicos , Folhas de Planta/metabolismo
9.
J Plant Physiol ; 220: 193-202, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29197761

RESUMO

Climate change can have major consequences for grassland communities since the different species of the community utilize different mechanisms for adaptation to drought and elevated CO2 levels. In addition, contradictory data exist when the combined effects of elevated CO2 and drought are analyzed because the soil water content is not usually similar between CO2 concentrations. Thus, the objectives of this work have been to examine the effect of water stress on plant water relations in two grassland species (Trifolium pratense and Agrostis capillaris), analyzing the possible differences between the two species when soil water content is equal in all treatments, and to elucidate if development under elevated CO2 increases drought tolerance and if so, which are the underlying mechanisms. At ambient CO2, when soil volumetric water content was 15%, both species decreased their water potential in order to continue taking up water. Trifolium pratense performed osmotic adjustment, while Agrostis capillaris decreased the rigidity of its cell wall; moreover, both species increased the root to shoot ratio and decreased leaf area. However, these mechanisms were not sufficient to maintain cell turgor. Elevated CO2 partially mitigated the negative impact of drought on turgor potential in Trifolium pratense through a higher osmotic adjustment and root to shoot ratio and in Agrostis capillaris through a higher leaf relative water content caused by higher hydraulic conductance, but the impact of drought was not mitigated in either species by higher soil water conservation.


Assuntos
Agrostis/fisiologia , Dióxido de Carbono/metabolismo , Secas , Trifolium/fisiologia , Água/fisiologia , Pradaria , Especificidade da Espécie
10.
Plant Physiol Biochem ; 123: 233-241, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29253801

RESUMO

The present study was focused on lettuce, a widely consumed leafy vegetable for the large number of healthy phenolic compounds. Two differently-pigmented lettuce cultivars, i.e. an acyanic-green leaf cv. and an anthocyanic-red one, were grown under high light intensity or elevated CO2 or both in order to evaluate how environmental conditions may affect the production of secondary phenolic metabolites and, thus, lettuce quality. Mild light stress imposed for a short time under ambient or elevated CO2 concentration increased phenolics compounds as well as antioxidant capacity in both lettuce cvs, indicating how the cultivation practice could enhance the health-promoting benefits of lettuce. The phenolic profile depended on pigmentation and the anthocyanic-red cv. always maintained a higher phenolic amount as well as antioxidant capacity than the acyanic-green one. In particular, quercetin, quercetin-3-O-glucuronide, kaempferol, quercitrin and rutin accumulated under high light or high CO2 in the anthocyanic-red cv., whereas cyanidin derivatives were responsive to mild light stress, both at ambient and elevated CO2. In both cvs total free and conjugated phenolic acids maintained higher values under all altered environmental conditions, whereas luteolin reached significant amounts when both stresses were administered together, indicating, in this last case, that the enzymatic regulation of the flavonoid synthesis could be differently affected, the synthesis of flavones being favored.


Assuntos
Dióxido de Carbono/farmacologia , Flavonoides/biossíntese , Lactuca/metabolismo , Luz , Fenóis/metabolismo
11.
Plant Physiol Biochem ; 115: 269-278, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28411511

RESUMO

Both salt stress and high CO2 level, besides influencing secondary metabolism, can affect oxidative status of plants mainly acting in an opposite way with salinity provoking oxidative stress and elevated CO2 alleviating it. The aim of the present work was to study the changes in the composition of phenolic acids and flavonoids as well as in the antioxidant activity in two differently pigmented lettuce cvs (green or red leaf) when submitted to salinity (200 mM NaCl) or elevated CO2 (700 ppm) or to their combination in order to evaluate how a future global change can affect lettuce quality. Following treatments, the red cv. always maintained higher levels of antioxidant secondary metabolites as well as antioxidant activity, proving to be more responsive to altered environmental conditions than the green one. Overall, these results suggest that the application of moderate salinity or elevated CO2, alone or in combination, can induce the production of some phenolics that increase the health benefits of lettuce. In particular, moderate salinity was able to induce the synthesis of the flavonoids quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide and quercitrin. Phenolics-enrichment as well as a higher antioxidant capacity were also observed under high CO2 with the red lettuce accumulating cyanidin, free chlorogenic acid, conjugated caffeic and ferulic acid as well as quercetin, quercetin-3-O-glucoside, quercetin-3-O-glucuronide, luteolin-7-O-glucoside, rutin, quercitrin and kaempferol. When salinity was present in combination with elevated CO2, reduction in yield was prevented and a higher presence of phenolic compounds, in particular luteolin, was observed compared to salinity alone.


Assuntos
Dióxido de Carbono/farmacologia , Lactuca/efeitos dos fármacos , Lactuca/metabolismo , Fenóis/metabolismo , Antocianinas/metabolismo , Antioxidantes/metabolismo , Flavonas/metabolismo , Glucosídeos/metabolismo , Quercetina/análogos & derivados , Quercetina/metabolismo , Salinidade , Cloreto de Sódio/farmacologia
12.
J Plant Physiol ; 170(17): 1517-25, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-23838124

RESUMO

As a consequence of the increasing importance of vegetables in the human diet, there is an interest in enhancing both the productivity and quality of vegetables. A number of factors, including plant genotype and environmental growing conditions, can impact the production and quality of vegetables. The objective of this study was to determine whether elevated CO2, salinity, or high light treatments assayed individually, or salinity or high light in combination with elevated CO2, increased biomass production and antioxidant capacity in two lettuce cultivars. Elevated CO2 and its combination with salinity or high light increased biomass production in both cultivars, while high light treatment alone increased production in green-leaf lettuce but not in red-leaf lettuce. On the other hand, elevated CO2 and its combination with salinity or high light increased the antioxidant capacity of both cultivars, while high light treatment alone increased the antioxidant capacity of red-leaf lettuce, but not of green-leaf lettuce.


Assuntos
Antioxidantes/metabolismo , Dióxido de Carbono/farmacologia , Lactuca/metabolismo , Luz , Biomassa , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Lactuca/efeitos dos fármacos , Lactuca/efeitos da radiação , Água/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...