Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxidants (Basel) ; 13(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38790641

RESUMO

This work aimed to elucidate how O3 pollution causes a loss of regulation in the immune response in both the brain and the intestine. In this work, we studied the effect of exposing rats to low doses of O3 based on the association between the antioxidant response of superoxide dismutase (SOD) levels and the nuclear factor kappa light chains of activated B cells (NFκB) as markers of inflammation. Method: Seventy-two Wistar rats were used, divided into six groups that received the following treatments: Control and 7, 15, 30, 60, and 90 days of O3. After treatment, tissues were extracted and processed using Western blotting, biochemical, and immunohistochemical techniques. The results indicated an increase in 4-hydroxynonenal (4HNE) and Cu/Zn-SOD and a decrease in Mn-SOD, and SOD activity in the substantia nigra, jejunum, and colon decreased. Furthermore, the translocation of NFκB to the nucleus increased in the different organs studied. In conclusion, repeated exposure to O3 alters the regulation of the antioxidant and inflammatory response in the substantia nigra and the intestine. This indicates that these factors are critical in the loss of regulation in the inflammatory response; they respond to ozone pollution, which can occur in chronic degenerative diseases.

2.
Antioxidants (Basel) ; 12(7)2023 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-37507863

RESUMO

Repeated exposure to environmental ozone causes a chronic state of oxidative stress. This state is present in chronic degenerative diseases and induces a loss of control of the inflammatory response. Redox system dysfunction and failures in control of inflammatory responses are involved in a vicious circle that maintains and increases the degenerative process. The intestine also responds to secondary reactive species formed by exposure to ozone doses, generating noxious stimuli that increase degenerative damage. This review aims to elucidate how environmental pollution, mainly by ozone, induces a state of chronic oxidative stress with the loss of regulation of the inflammatory response, both in the intestine and in the brain, where the functionality of both structures is altered and plays a determining role in some neurodegenerative and chronic degenerative diseases. For this purpose, we searched for information on sites such as the Cochrane Library Database, PubMed, Scopus, and Medscape. Reviewing the data published, we can conclude that environmental pollutants are a severe health problem. Ozone pollution has different pathways of action, both molecular and systemic, and participates in neurodegenerative diseases such as Parkinson's and Alzheimer's disease as well in bowel diseases as Inflammatory Bowel Disease, Crohn's Disease, and Irritable Bowel Syndrome.

3.
Int J Endocrinol ; 2017: 4892609, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29463982

RESUMO

BACKGROUND: Adiponectin (APN) is an adipocyte-derived hormone that has peripheral beneficial effects. Although its receptors AdipoR1 and AdipoR2 are expressed in the brain, their function in neurons is poorly understood. The aims of this work were to describe the distribution of APN receptors in the olfactory bulb (OB) as well as the possible effects of APN injection on the insulin receptor (InsR) content and Akt kinase. METHOD: We performed the double immunofluorescence technique to describe the distribution of AdipoRs and the cellular type they were expressing. mRNA transcript and protein content were assessed by RT-PCR and Western blot, respectively. APN injection was performed to analyze its possible effect on the insulin pathway. RESULTS: We found that AdipoRs were localized in all cell layers and in both neurons and astrocytes. We observed the presence of mRNA transcripts and immunoblot analysis confirmed the protein on the intact OB; APN injection in the OB resulted in a slight decrease of the total InsR and Akt phosphorylation and a reduction of phopho-InsR content. CONCLUSIONS: These data demonstrated that AdipoRs are expressed in OB regions, and APN injection could act as an insulin pathway modulator in the OB and thus possibly contribute to olfaction physiology.

4.
Front Cell Neurosci ; 10: 7, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26858603

RESUMO

A new generation of antiepileptic drugs has emerged; however, one-third of epilepsy patients do not properly respond to pharmacological treatments. The purpose of the present study was to investigate whether time-restricted feeding (TRF) has an anticonvulsant effect and whether this restrictive diet promotes changes in energy metabolism and epigenetic modifications in a pilocarpine-induced seizure model. To resolve our hypothesis, one group of rats had free access to food and water ad libitum (AL) and a second group underwent a TRF schedule. We used the lithium-pilocarpine model to induce status epilepticus (SE), and behavioral seizure monitoring was analyzed. Additionally, an electroencephalography (EEG) recording was performed to verify the effect of TRF on cortical electrical activity after a pilocarpine injection. For biochemical analysis, animals were sacrificed 24 h after SE and hippocampal homogenates were used to evaluate the proteins related to metabolism and chromatin structure. Our results showed that TRF had an anticonvulsant effect as measured by the prolonged latency of forelimb clonus seizure, a decrease in the seizure severity score and fewer animals reaching SE. Additionally, the power of the late phase EEG recordings in the AL group was significantly higher than the TRF group. Moreover, we found that TRF is capable of inducing alterations in signaling pathways that regulate energy metabolism, including an increase in the phosphorylation of AMP dependent kinase (AMPK) and a decrease in the phosphorylation of Akt kinase. Furthermore, we found that TRF was able to significantly increase the beta hydroxybutyrate (ß-HB) concentration, an endogenous inhibitor of histone deacetylases (HDACs). Finally, we found a significant decrease in HDAC activity as well as an increase in acetylation on histone 3 (H3) in hippocampal homogenates from the TRF group. These findings suggest that alterations in energy metabolism and the increase in ß-HB mediated by TRF may inhibit HDAC activity, thus increasing histone acetylation and producing changes in the chromatin structure, which likely facilitates the transcription of a subset of genes that confer anticonvulsant activity.

5.
J Mol Neurosci ; 52(4): 515-24, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24085524

RESUMO

We investigated the effect of restraint on the release of dopamine, GABA and glutamate in the medial prefrontal cortex (mPFC) of lactating compared with virgin Wistar female rats; besides the expression of D1, neuropeptide Y Y2, GABA receptors and corticotropin-releasing factor (CRF). Results from microdialysis experiments showed that basal dopamine and GABA, but not glutamate, concentrations were higher in lactating rats. In virgin animals, immobilization caused significant increase in dopamine, whereas GABA was unchanged and glutamate reduced. In lactating animals, restrain significantly decreased dopamine concentrations and, in contrast to virgin animals, GABA and glutamate concentrations increased. We found a higher expression of CRF, as well as the D1 and neuropeptide Y Y2 receptors in the left mPFC of virgin stressed rats; also, only stressed lactating animals showed a significant increase in immunopositive cells to GABA in the left cingulate cortex; meanwhile, a significant decrease was measured in virgin rats after stress in the left prelimbic region. The increased inhibition of the mPFC dopamine cells during stress and the down-regulated expression of the neuropeptide Y Y2 receptor may explain the lower CRF and hyporesponse to stress measured in lactating animals. Interestingly, participation of mPFC in stress regulation seems to be lateralized.


Assuntos
Dopamina/metabolismo , Lactação/metabolismo , Córtex Pré-Frontal/metabolismo , Estresse Psicológico/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Hormônio Liberador da Corticotropina/metabolismo , Regulação para Baixo/fisiologia , Feminino , Ácido Glutâmico/metabolismo , Sistema Límbico/metabolismo , Microdiálise , Ratos , Ratos Wistar , Receptores de Dopamina D1/metabolismo , Receptores de Neuropeptídeo Y/metabolismo
6.
Neurochem Int ; 59(5): 671-6, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21740945

RESUMO

Progesterone exerts a variety of actions in the brain through the interaction with its receptors (PR) which have two isoforms with different function and regulation: PR-A and PR-B. Progesterone may modulate neurotransmission by regulating the expression of neurotransmitters synthesizing enzymes or their receptors in several brain regions. The role of PR isoforms in this modulation is unknown. We explored the role of PR isoforms in the regulation of tryptophan (TPH) and tyrosine (TH) hydroxylase, and glutamic acid decarboxylase (GAD) expression in the hypothalamus of ovariectomized rats. Two weeks after ovariectomy, animals were subcutaneously injected with 5 µg of estradiol benzoate (EB), and 40 h later, progesterone (P) was intracerebroventricularly (ICV) injected. Each animal received two ICV injections of 1 µg/µl (4 nmol) of PR-B and total PR (PR-A+PR-B) sense or antisense (As) oligonucleotides (ODNs). First injection was made immediately before sc EB injection, and 24h later animals received the second one. Twenty-four hours after P administration, rats were euthanized and brains removed to measure the expression of PR-A and PR-B, TPH, TH and GAD by Western blot. We observed that sense ODNs modified neither PR isoforms nor enzymes expression in the hypothalamus, whereas PR A+B antisense (PR A+B As) clearly decreased the expression of both PR isoforms in this region. ICV administration of PR-B As only decreased PR-B isoform expression with no significant effects on PR-A expression. A differential protein expression of TPH, TH and GAD was observed after PR isoforms antisense administration. PR-B As administration decreased the expression of TPH (65% with respect to control). In contrast, PR A+B As and PR-B As administration increased (51.6% and 34.4%, respectively) TH expression. The administration of PR A+B As and PR-B As diminished GAD expression (33.4% and 41.6%, respectively). Our findings indicate that PR isoforms play a differential role in the regulation of the content of TPH, TH and GAD in the rat hypothalamus.


Assuntos
Glutamato Descarboxilase/biossíntese , Hipotálamo/enzimologia , Receptores de Progesterona/metabolismo , Triptofano Hidroxilase/biossíntese , Tirosina 3-Mono-Oxigenase/biossíntese , Animais , Western Blotting , Estradiol/análogos & derivados , Estradiol/farmacologia , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/fisiologia , Hipotálamo/efeitos dos fármacos , Injeções Intraventriculares , Isomerismo , Oligonucleotídeos Antissenso , Ovariectomia , Ratos , Ratos Sprague-Dawley , Receptores de Progesterona/química , Receptores de Progesterona/efeitos dos fármacos
7.
Neuroendocrinology ; 90(1): 73-81, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19506349

RESUMO

Progesterone and its ring A reduced metabolites regulate female sexual behavior through the direct or indirect activation of progesterone receptor (PR) which has two isoforms with different function and regulation: PR-A and PR-B. The contribution of each PR isoform to the regulation of lordosis in rats is unknown. We explored the role of PR isoforms in lordosis display induced by progesterone and two of its ring A reduced metabolites: 5alpha-pregnan-3,20-dione (5alpha-DHP), and 5beta,3beta-pregnan-20-one (5beta,3beta-Pgl) in adult ovariectomized rats. Two weeks after ovariectomy, the animals were injected subcutaneously with 5 microg of estradiol benzoate (EB), and 40 h later, progestins were injected intracerebroventricularly. PR-B and total PR (PR-A + PR-B) sense or antisense oligonucleotides were administered intracerebroventricularly immediately before EB injection and 24 h later. Lordosis was evaluated 30, 120 and 240 min after progestin administration. Western blot analysis of both PR isoforms was performed in the hypothalamus and preoptic area 24 h after lordosis tests. All progestins induced maximal lordosis 120 min after administration, and antisense oligonucleotides against both PR isoforms inhibited lordosis in all animals. PR-B antisense oligonucleotides also inhibited lordosis induced by progesterone and 5alpha-DHP although with less efficacy than total PR antisense oligonucleotides, but the former inhibited lordosis induced by 5beta,3beta-Pgl in a similar manner as total PR antisense oligonucleotides. In the hypothalamus and preoptic area, the content of both PR isoforms or PR-B alone was diminished by the administration of total or PR-B antisense oligonucleotides, respectively. These results suggest that the PR-B isoform is essential for the display of the lordosis behavior in rats.


Assuntos
Hipotálamo/metabolismo , Área Pré-Óptica/metabolismo , Progestinas/metabolismo , Receptores de Progesterona/metabolismo , Comportamento Sexual Animal/fisiologia , 5-alfa-Di-Hidroprogesterona/metabolismo , Animais , Western Blotting , Feminino , Oligonucleotídeos Antissenso/metabolismo , Ovariectomia , Postura/fisiologia , Pregnanolona/metabolismo , Progesterona/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de Progesterona/genética , Fatores de Tempo
8.
Neurochem Res ; 33(8): 1568-73, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18363096

RESUMO

Sex steroids exert multiple functions in the central nervous system. They modulate responses to olfactory information in mammals but their participation in the regulation of neurotransmission in the olfactory bulb is unknown. We studied by Western blot the effects of estradiol (E2), progesterone (P4), and allopregnanolone (Allo) on the content of glutamic acid decarboxylase (GAD), gamma-aminobutyric acid A receptor alpha-2 subunit (GABA(A)R alpha-2), glutamate receptor 2/3 (GlutR 2/3), and tyrosine hydroxylase (TH) in the olfactory bulb of gonadectomized male rats. GAD content was increased by all steroids administered alone. Interestingly, progestins reduced E2 effects on GAD content. Steroids increased the content of TH and GABA(A)R alpha-2. In contrast, GlutR 2/3 content was decreased by E2 and P4, whereas Allo did not modify it. These results suggest that estrogens and progestins regulate olfactory bulb functions in the male rat by modulating the expression of key proteins involved in several neurotransmission systems.


Assuntos
Estradiol/metabolismo , Glutamato Descarboxilase/metabolismo , Bulbo Olfatório/metabolismo , Pregnanolona/metabolismo , Progesterona/metabolismo , Receptores de GABA-A/metabolismo , Receptores de Glutamato/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo , Animais , Dopamina/metabolismo , Feminino , Masculino , Bulbo Olfatório/citologia , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...