Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38700964

RESUMO

This paper presents an innovative T/Y-maze-based wireless power transmission (WPT) system designed to monitor spatial reference memory and learning behavior in freely moving rats. The system facilitates uninterrupted optical/electrical stimulation and neural recording experiments through the integration of wireless headstages or implants in T/Y maze setups. Utilizing an array of resonators covering the entire underneath of the mazes, the wireless platform ensures scalability with various configurations. The array is designed to ensure a natural localization mechanism to localize the Tx power toward the location of the Rx coil. The system is analyzed and modeled using ANSYS HFSS software to optimize design. The primary goal was to achieve uniform wireless power delivery throughout the mazes through a comparative study of different transmitter (Tx) array configurations, such as float, series, and parallel resonators. The calculated Specific Absorption Rate (SAR) in rat tissue model equals 1.7 W/kg at the power carrier frequency of 13.56 MHz. A prototype of the proposed maze-based WPT design, featuring 8 Tx resonators, a Tx coil and power amplifier, and a headstage power harvesting unit, is successfully implemented and its performance characterized for all three resonator configurations. The implemented T maze-based WPT system has a total length of 128 cm. In the overlapping Tx resonators configuration, a homogeneity of 94% is achieved for the measured power transfer efficiency at over 30%, while continuously delivering over 60 mW for series configuration.

2.
Artigo em Inglês | MEDLINE | ID: mdl-38466594

RESUMO

This paper presents a novel resonance-based, adaptable, and flexible inductive wireless power transmission (WPT) link for powering implantable and wearable devices throughout the human body. The proposed design provides a comprehensive solution for wirelessly delivering power, sub-micro to hundreds of milliwatts, to deep-tissue implantable devices (3D space of human body) and surface-level wearable devices (2D surface of human skin) safely and seamlessly. The link comprises a belt-fitted transmitter (Belt-Tx) coil equipped with a power amplifier (PA) and a data demodulator unit, two resonator clusters (to cover upper-body and lower-body), and a receiver (Rx) unit that consists of Rx load and resonator coils, rectifier, microcontroller, and data modulator units for implementing a closed-loop power control (CLPC) mechanism. All coils are tuned at 13.56 MHz, Federal Communications Commission (FCC)-approved industrial, scientific, and medical (ISM) band. Novel customizable configurations of resonators in the clusters, parallel for implantable devices and cross-parallel for wearable devices and vertically oriented implants, ensure uniform power delivered to the load, PDL, enabling natural Tx power localization toward the Rx unit. The proposed design is modeled, simulated, and optimized using ANSYS HFSS software. The Specific Absorption Rate (SAR) is calculated under 1.5 W/kg, indicating the design's safety for the human body. The proposed link is implemented, and its performance is characterized. For both the parallel cluster (implant) and cross-parallel cluster (wearable) scenarios, the measured results indicate: 1) an upper-body PDL exceeding 350 mW with a Power Transfer Efficiency (PTE) reaching 25%, and 2) a lower-body PDL surpassing 360 mW with a PTE of up to 20%, while covering up to 92% of the human body.

3.
IEEE Trans Biomed Circuits Syst ; 17(3): 521-533, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37307182

RESUMO

This article presents a highly scalable and rack-mountable wireless sensing system for long-term monitoring (i.e., sense and estimate) of small animal/s' physical state (SAPS), such as changes in location and posture within standard cages. The conventional tracking systems may lack one or more features such as scalability, cost efficiency, rack-mount ability, and light condition insensitivity to work 24/7 on a large scale. The proposed sensing mechanism relies on relative changes of multiple resonance frequencies due to the animal's presence over the sensor unit. The sensor unit can track SAPS changes based on changes in electrical properties in the sensors near fields, appearing in the resonance frequencies, i.e., an Electromagnetic (EM) Signature, within the 200 MHz-300 MHz frequency range. The sensing unit is located underneath a standard mouse cage and consists of thin layers of a reading coil and six resonators tuned at six distinct frequencies. ANSYS HFSS software is used to model and optimize the proposed sensor unit and calculate the Specific Absorption Rate (SAR) obtained under 0.05 W/kg. Multiple prototypes have been implemented to test, validate, and characterize the performance of the design by conducting in vitro and in vivo experiments on Mice. The in-vitro test results have shown a 15 mm spatial resolution in detecting the mouse's location over the sensor array having maximum frequency shifts of 832 kHz and posture detection with under 30° resolution. The in-vivo experiment on mouse displacement resulted in frequency shifts of up to 790 kHz, indicating the SAPS's capability to detect the Mice's physical state.


Assuntos
Ciência dos Animais de Laboratório , Tecnologia sem Fio , Animais , Camundongos , Animais de Laboratório , Ciência dos Animais de Laboratório/instrumentação
4.
IEEE Trans Biomed Eng ; 70(9): 2529-2539, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37028022

RESUMO

This paper presents an automatic camera-based device to monitor and evaluate the gait speed, standing balance, and 5 times sit-stand (5TSS) tests of the Short Physical Performance Battery (SPPB) and the Timed Up and Go (TUG) test. The proposed design measures and calculates the parameters of the SPPB tests automatically. The SPPB data can be used for physical performance assessment of older patients under cancer treatment. This stand-alone device has a Raspberry Pi (RPi) computer, three cameras, and two DC motors. The left and right cameras are used for gait speed tests. The center camera is used for standing balance, 5TSS, and TUG tests and for angle positioning of the camera platform toward the subject using DC motors by turning the camera left/right and tilting it up/down. The key algorithm for operating the proposed system is developed using Channel and Spatial Reliability Tracking in the cv2 module in Python. Graphical User Interfaces (GUIs) in the RPi are developed to run tests and adjust cameras, controlled remotely via smartphone and its Wi-Fi hotspot. We have tested the implemented camera setup prototype and extracted all SPPB and TUG parameters by conducting several experiments on a human subject population of 8 volunteers (male and female, light and dark complexions) in 69 test runs. The measured data and calculated outputs of the system consist of tests of gait speed (0.041 to 1.92 m/s with average accuracy of >95%), and standing balance, 5TSS, TUG, all with average time accuracy of >97%.


Assuntos
Neoplasias , Velocidade de Caminhada , Humanos , Masculino , Feminino , Idoso , Reprodutibilidade dos Testes , Programas de Rastreamento , Desempenho Físico Funcional , Equilíbrio Postural , Avaliação Geriátrica , Neoplasias/diagnóstico
5.
IEEE Trans Biomed Eng ; 67(8): 2359-2369, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31870973

RESUMO

This work presents a high-throughput and scalable wirelessly-powered smart arena for behavioral experiments made of multiple EnerCage Homecage (HC) systems, operating in parallel in a way that they can fit in standard racks that are commonly used in animal facilities. The proposed system, which is referred to as the multi-EnerCage-HC (mEHC), increases the volume of data that can be collected from more animal subjects, while lowering the cost and duration of experiments as well as stress-induced bias by minimizing the involvement of human operators. Thus improving the quality, reproducibility, and statistical power of experiment outcomes, while saving precious lab space. The system is equipped with an auto-tuning mechanism to compensate for the resonance frequency shifts caused by the dynamic nature of the mutual inductance between adjacent homecages. A functional prototype of the mEHC system has been implemented with 7 units and analyzed for theoretical design considerations that would minimize the effects of interference and resonance frequency bifurcation. Experiment results demonstrate robust wireless power and data transmissions capabilities of this system within the noisy lab environment.


Assuntos
Fontes de Energia Elétrica , Tecnologia sem Fio , Animais , Comportamento Animal , Humanos , Reprodutibilidade dos Testes
6.
IEEE Trans Biomed Circuits Syst ; 13(4): 608-618, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31135371

RESUMO

This paper presents a mm-sized, free-floating, wirelessly powered, implantable optical stimulation (FF-WIOS) device for untethered optogenetic neuromodulation. A resonator-based three-coil inductive link creates a homogeneous magnetic field that continuously delivers sufficient power (>2.7 mW) at an optimal carrier frequency of 60 MHz to the FF-WIOS in the near field without surpassing the specific absorption rate limit, regardless of the position of the FF-WIOS in a large brain area. Forward data telemetry carries stimulation parameters by on-off-keying the power carrier at a data rate of 50 kb/s to selectively activate a 4 × 4 µLED array. Load-shift-keying back telemetry controls the wireless power transmission by reporting the FF-WIOS received power level in a closed-loop power control mechanism. LEDs typically require high instantaneous power to emit sufficient light for optical stimulation. Thus, a switched-capacitor-based stimulation architecture is used as an energy storage buffer with one off-chip capacitor to receive charge directly from the inductive link and deliver it to the selected µLED at the onset of stimulation. The FF-WIOS system-on-a-chip prototype, fabricated in a 0.35-µm standard CMOS process, charges a 10-µF capacitor up to 5 V with 37% efficiency and passes instantaneous current spikes up to 10 mA in the selected µLED, creating a bright exponentially decaying flash with minimal wasted power. An in vivo experiment was conducted to verify the efficacy of the FF-WIOS by observing light-evoked local field potentials and immunostained tissue response from the primary visual cortex (V1) of two anesthetized rats.


Assuntos
Fontes de Energia Elétrica , Dispositivos Ópticos , Estimulação Luminosa/instrumentação , Próteses e Implantes , Tecnologia sem Fio , Potenciais de Ação , Algoritmos , Animais , Simulação por Computador , Eletrodos , Feminino , Microtecnologia , Modelos Teóricos , Optogenética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Ratos Sprague-Dawley , Ovinos
7.
IEEE Trans Biomed Circuits Syst ; 13(4): 595-607, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31071052

RESUMO

Distributed neural interfaces made of many mm-sized implantable medical devices (IMDs) are poised to play a key role in future brain-computer interfaces because of less damage to the surrounding tissue. Evaluating them wirelessly at preclinical stage (e.g., in a rodent model), however, is a major challenge due to weak coupling and significant losses, resulting in limited power delivery to the IMD within a nominal experimental arena, like a homecage, without surpassing the specific absorption rate limit. To address this problem, we present a dual-band EnerCage system with two multi-coil inductive links, which first deliver power at 13.56 MHz from the EnerCage (46 × 24 × 20 cm3) to a headstage (18 × 18 × 15 mm3, 4.8 g) that is carried by the animal via a 4-coil inductive link. Then, a 60 MHz 3-coil inductive link from the headstage powers up the small IMD (2.5 × 2.5 × 1.5 mm3, 15 mg), which in this case is a free floating, wirelessly powered, implantable optical stimulator (FF-WIOS). The power transfer efficiency and power delivered to the load (PDL) from EnerCage to the headstage at 7 cm height were 14.9%-22.7% and 122 mW; and from headstage to FF-WIOS at 5 mm depth were 18% and 2.7 mW, respectively. Bidirectional data connectivity between EnerCage-headstage was established via bluetooth low energy. Between headstage and FF-WIOS, on-off keying and load-shift-keying were used for downlink and uplink data, respectively. Moreover, a closed-loop power controller stabilized PDL to both the headstage and the FF-WIOS against misalignments.


Assuntos
Fontes de Energia Elétrica , Próteses e Implantes , Tecnologia sem Fio , Algoritmos , Animais , Simulação por Computador , Desenho de Equipamento , Ovinos , Tecnologia sem Fio/instrumentação
8.
IEEE Trans Biomed Circuits Syst ; 13(2): 413-424, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30624226

RESUMO

An inductively-powered wireless integrated neural recording and stimulation (WINeRS-8) system-on-a-chip (SoC) that is compatible with the EnerCage-HC2 for wireless/battery-less operation has been presented for neuroscience experiments on freely behaving animals. WINeRS-8 includes a 32-ch recording analog front end, a 4-ch current-controlled stimulator, and a 434 MHz on - off keying data link to an external software- defined radio wideband receiver (Rx). The headstage also has a bluetooth low energy link for controlling the SoC. WINeRS-8/EnerCage-HC2 systems form a bidirectional wireless and battery-less neural interface within a standard homecage, which can support longitudinal experiments in an enriched environment. Both systems were verified in vivo on rat animal model, and the recorded signals were compared with hardwired and battery-powered recording results. Realtime stimulation and recording verified the system's potential for bidirectional neural interfacing within the homecage, while continuously delivering 35 mW to the hybrid WINeRS-8 headstage over an unlimited period.


Assuntos
Comportamento Animal/fisiologia , Encéfalo/fisiologia , Fontes de Energia Elétrica , Tecnologia sem Fio , Potenciais de Ação , Animais , Estimulação Elétrica , Eletrodos , Ratos Sprague-Dawley , Espectrografia do Som
9.
Med Biol Eng Comput ; 56(10): 1807-1821, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29560548

RESUMO

A rodent behavior analysis system is presented, capable of automated tracking, pose estimation, and recognition of nine behaviors in freely moving animals. The system tracks three key points on the rodent body (nose, center of body, and base of tail) to estimate its pose and head rotation angle in real time. A support vector machine (SVM)-based model, including label optimization steps, is trained to classify on a frame-by-frame basis: resting, walking, bending, grooming, sniffing, rearing supported, rearing unsupported, micro-movements, and "other" behaviors. Compared to conventional red-green-blue (RGB) camera-based methods, the proposed system operates on 3D depth images provided by the Kinect infrared (IR) camera, enabling stable performance regardless of lighting conditions and animal color contrast with the background. This is particularly beneficial for monitoring nocturnal animals' behavior. 3D features are designed to be extracted directly from the depth stream and combined with contour-based 2D features to further improve recognition accuracies. The system is validated on three freely behaving rats for 168 min in total. The behavior recognition model achieved a cross-validation accuracy of 86.8% on the rat used for training and accuracies of 82.1 and 83% on the other two "testing" rats. The automated head angle estimation aided by behavior recognition resulted in 0.76 correlation with human expert annotation. Graphical abstract Top view of a rat freely behaving in a standard homecage, captured by Kinect-v2 sensors. The depth image is used for constructing a 3D topography of the animal for pose estimation, behavior recognition, and head angle calculation. Results of the processed data are displayed on the user interface in various forms.


Assuntos
Comportamento Animal , Imageamento Tridimensional , Movimento , Algoritmos , Animais , Automação , Análise de Componente Principal , Ratos
10.
IEEE Trans Biomed Circuits Syst ; 11(3): 692-702, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28504947

RESUMO

This paper presents an inductive link for wireless power transmission (WPT) to mm-sized free-floating implants (FFIs) distributed in a large three-dimensional space in the neural tissue that is insensitive to the exact location of the receiver (Rx). The proposed structure utilizes a high-Q resonator on the target wirelessly powered plane that encompasses randomly positioned multiple FFIs, all powered by a large external transmitter (Tx). Based on resonant WPT fundamentals, we have devised a detailed method for optimization of the FFIs and explored design strategies and safety concerns, such as coil segmentation and specific absorption rate limits using realistic finite element simulation models in HFSS including head tissue layers, respectively. We have built several FFI prototypes to conduct accurate measurements and to characterize the performance of the proposed WPT method. Measurement results on 1-mm receivers operating at 60 MHz show power transfer efficiency and power delivered to the load at 2.4% and 1.3 mW, respectively, within 14-18 mm of Tx-Rx separation and 7 cm2 of brain surface.


Assuntos
Fontes de Energia Elétrica , Próteses e Implantes , Tecnologia sem Fio , Desenho de Equipamento , Análise de Elementos Finitos , Humanos
11.
IEEE Trans Biomed Eng ; 64(10): 2439-2449, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28410095

RESUMO

We have developed a new headstage architecture as part of a smart experimental arena, known as the EnerCage-HC2 system, which automatically delivers stimulation and collects behavioral data over extended periods with minimal small animal subject handling or personnel intervention in a standard rodent homecage. Equipped with a four-coil inductive link, the EnerCage-HC2 system wirelessly powers the receiver (Rx) headstage, irrespective of the subject's location or head orientation, eliminating the need for tethering or carrying bulky batteries. On the transmitter (Tx) side, a driver coil, five high-quality (Q) factor segmented resonators at different heights and orientations, and a closed-loop Tx power controller create a homogeneous electromagnetic (EM) field within the homecage 3-D space, and compensate for drops in power transfer efficiency (PTE) due to Rx misalignments. The headstage is equipped with four small slanted resonators, each covering a range of head orientations with respect to the Tx resonators, which direct the EM field toward the load coil at the bottom of the headstage. Moreover, data links based on Wi-Fi, UART, and Bluetooth low energy are utilized to enables remote communication and control of the Rx. The PTE varies within 23.6%-33.3% and 6.7%-10.1% at headstage heights of 8 and 20 cm, respectively, while continuously delivering >40 mW to the Rx electronics even at 90° rotation. As a proof of EnerCage-HC2 functionality in vivo, a previously documented on-demand electrical stimulation of the globus pallidus, eliciting consistent head rotation, is demonstrated in three freely behaving rats.


Assuntos
Fontes de Energia Elétrica/veterinária , Abrigo para Animais , Monitorização Ambulatorial/instrumentação , Monitorização Ambulatorial/veterinária , Tecnologia sem Fio/instrumentação , Animais , Transferência de Energia , Desenho de Equipamento , Análise de Falha de Equipamento , Masculino , Miniaturização , Ratos , Ratos Sprague-Dawley
12.
IEEE Trans Biomed Circuits Syst ; 11(6): 1366-1376, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29293426

RESUMO

This paper presents a feasibility study of wireless power and data transmission through an inductive link to a 1-mm 2 implant, to be used as a free-floating neural probe, distributed across a brain area of interest. The proposed structure utilizes a four-coil inductive link for back telemetry, shared with a three-coil link for wireless power transmission. We propose a design procedure for geometrical optimization of the inductive link in terms of power transmission efficiency (PTE) considering specific absorption rate and data rate. We have designed a low-power pulse-based active data transmission circuit and characterized performance of the proposed inductive link in terms of its data rate and bit error rate (BER). The 1-mm2 data-Tx/power-Rx coil is implemented using insulated bonding wire with diameter, resulting in measured PTE in tissue media of 2.01% at 131 MHz and 1.8-cm coil separation distance when the resonator coil inner radius is 1 cm. The measured BER at 1-Mbps data rate was and in the air and tissue environments, respectively.


Assuntos
Próteses e Implantes , Telemetria/métodos , Desenho de Equipamento , Tecnologia sem Fio/instrumentação
13.
IEEE Trans Biomed Circuits Syst ; 10(5): 979-989, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27654976

RESUMO

A new wireless electrophysiology data acquisition system, built around a standard homecage, is presented in this paper, which can power up and communicate with sensors and actuators/stimulators attached to or implanted in small freely behaving animal subjects, such as rodents. Key abilities of the energized homecage (EnerCage) system is enabling longitudinal experiments with minimal operator involvement or interruption, while providing test subjects with an enriched environment closer to their natural habitat, without the burden of being tethered or carrying bulky batteries. The magnetic resonant multi-coil design used in the new EnerCage-HC2 automatically localizes the transmitted electromagnetic power from a single transmitter (Tx) coil at the bottom of the cage toward the receiver coil (Rx), carried on/in the animal body, obviating the need for tracking the animal or switching the coils. In order to increase the resonators' quality factor (Q > 166) at the desired operating frequency of 13.56 MHz, while maintaining a high self-resonance frequency [Formula: see text], they are made of wide copper foils and optimally segmented based on a set of design rules that can be adopted for experimental arenas with different shapes and dimensions. The Rx rectified voltage is regulated at a user-defined window [Formula: see text] by a Tx-Rx closed-loop power control (CLPC) mechanism that creates a volume inside the homecage with 42 mW of power delivered to the load (PDL), and a homogeneous power transfer efficiency (PTE) plane of 14% on average at ∼7 cm height, plus stability against angular mis-alignments of up to 80°.


Assuntos
Técnicas Biossensoriais/instrumentação , Técnicas Biossensoriais/veterinária , Fontes de Energia Elétrica/veterinária , Abrigo para Animais , Monitorização Ambulatorial/instrumentação , Monitorização Ambulatorial/veterinária , Tecnologia sem Fio/instrumentação , Animais , Cobre , Desenho de Equipamento , Análise de Falha de Equipamento , Retroalimentação , Miniaturização
14.
Annu Int Conf IEEE Eng Med Biol Soc ; 2016: 6323-6326, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28269695

RESUMO

This paper presents a new EnerCage-homecage system, EnerCage-HC2, for longitudinal electrophysiology data acquisition experiments on small freely moving animal subjects, such as rodents. EnerCage-HC2 is equipped with multi-coil wireless power transmission (WPT), closed-loop power control, bidirectional data communication via Bluetooth Low Energy (BLE), and Microsoft Kinect® based animal behavior tracking and analysis. The EnerCage-HC2 achieves a homogeneous power transfer efficiency (PTE) of 14% on average, with ~42 mW power delivered to the load (PDL) at a nominal height of 7 cm by the closed-loop power control mechanism. The Microsoft Kinect® behavioral analysis algorithm can not only track the animal position in real-time but also classify 5 different types of rodent behaviors: standstill, walking, grooming, rearing, and rotating. A proof-of-concept in vivo experiment was conducted on two awake freely behaving rats while successfully operating a one-channel stimulator and generating an ethogram.


Assuntos
Comportamento Animal , Fontes de Energia Elétrica , Tecnologia sem Fio , Algoritmos , Animais , Masculino , Ratos
15.
Micromachines (Basel) ; 7(9)2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30404327

RESUMO

A new class of wireless neural interfaces is under development in the form of tens to hundreds of mm-sized untethered implants, distributed across the target brain region(s). Unlike traditional interfaces that are tethered to a centralized control unit and suffer from micromotions that may damage the surrounding neural tissue, the new free-floating wireless implantable neural recording (FF-WINeR) probes will be stand-alone, directly communicating with an external interrogator. Towards development of the FF-WINeR, in this paper we describe the micromachining, microassembly, and hermetic packaging of 1-mm³ passive probes, each of which consists of a thinned micromachined silicon die with a centered Ø(diameter) 130 µm through-hole, an Ø81 µm sharpened tungsten electrode, a 7-turn gold wire-wound coil wrapped around the die, two 0201 surface mount capacitors on the die, and parylene-C/Polydimethylsiloxane (PDMS) coating. The fabricated passive probe is tested under a 3-coil inductive link to evaluate power transfer efficiency (PTE) and power delivered to a load (PDL) for feasibility assessment. The minimum PTE/PDL at 137 MHz were 0.76%/240 µW and 0.6%/191 µW in the air and lamb head medium, respectively, with coil separation of 2.8 cm and 9 kΩ receiver (Rx) loading. Six hermetically sealed probes went through wireless hermeticity testing, using a 2-coil inductive link under accelerated lifetime testing condition of 85 °C, 1 atm, and 100%RH. The mean-time-to-failure (MTTF) of the probes at 37 °C is extrapolated to be 28.7 years, which is over their lifetime.

16.
IEEE Trans Biomed Circuits Syst ; 10(2): 424-34, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26011866

RESUMO

This paper presents a novel experimental chamber with uniform wireless power distribution in 3D for enabling long-term biomedical experiments with small freely moving animal subjects. The implemented power transmission chamber prototype is based on arrays of parallel resonators and multicoil inductive links, to form a novel and highly efficient wireless power transmission system. The power transmitter unit includes several identical resonators enclosed in a scalable array of overlapping square coils which are connected in parallel to provide uniform power distribution along x and y. Moreover, the proposed chamber uses two arrays of primary resonators, facing each other, and connected in parallel to achieve uniform power distribution along the z axis. Each surface includes 9 overlapped coils connected in parallel and implemented into two layers of FR4 printed circuit board. The chamber features a natural power localization mechanism, which simplifies its implementation and ease its operation by avoiding the need for active detection and control mechanisms. A single power surface based on the proposed approach can provide a power transfer efficiency (PTE) of 69% and a power delivered to the load (PDL) of 120 mW, for a separation distance of 4 cm, whereas the complete chamber prototype provides a uniform PTE of 59% and a PDL of 100 mW in 3D, everywhere inside the chamber with a size of 27×27×16 cm(3).


Assuntos
Locomoção , Tecnologia sem Fio/instrumentação , Animais , Fontes de Energia Elétrica , Desenho de Equipamento , Software
17.
IEEE Trans Biomed Circuits Syst ; 10(1): 38-48, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25794394

RESUMO

Implanted antennas for implant-to-air data communications must be composed of material compatible with biological tissues. We design single and dual-polarization antennas for wireless ultra-wideband neural recording systems using an inhomogeneous multi-layer model of the human head. Antennas made from flexible materials are more easily adapted to implantation; we investigate both flexible and rigid materials and examine performance trade-offs. The proposed antennas are designed to operate in a frequency range of 2-11 GHz (having S11 below -10 dB) covering both the 2.45 GHz (ISM) band and the 3.1-10.6 GHz UWB band. Measurements confirm simulation results showing flexible antennas have little performance degradation due to bending effects (in terms of impedance matching). Our miniaturized flexible antennas are 12 mm×12 mm and 10 mm×9 mm for single- and dual-polarizations, respectively. Finally, a comparison is made of four implantable antennas covering the 2-11 GHz range: 1) rigid, single polarization, 2) rigid, dual polarization, 3) flexible, single polarization and 4) flexible, dual polarization. In all cases a rigid antenna is used outside the body, with an appropriate polarization. Several advantages were confirmed for dual polarization antennas: 1) smaller size, 2) lower sensitivity to angular misalignments, and 3) higher fidelity.


Assuntos
Neurônios/fisiologia , Desenho de Prótese/instrumentação , Tecnologia sem Fio/instrumentação , Simulação por Computador , Impedância Elétrica , Humanos , Miniaturização , Modelos Teóricos
18.
IEEE Trans Biomed Circuits Syst ; 10(3): 643-53, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26469635

RESUMO

We present a novel, fully-integrated, low-power full-duplex transceiver (FDT) to support high-density and bidirectional neural interfacing applications (high-channel count stimulating and recording) with asymmetric data rates: higher rates are required for recording (uplink signals) than stimulation (downlink signals). The transmitter (TX) and receiver (RX) share a single antenna to reduce implant size and complexity. The TX uses impulse radio ultra-wide band (IR-UWB) based on an edge combining approach, and the RX uses a novel 2.4-GHz on-off keying (OOK) receiver. Proper isolation (>20 dB) between the TX and RX path is implemented 1) by shaping the transmitted pulses to fall within the unregulated UWB spectrum (3.1-7 GHz), and 2) by space-efficient filtering (avoiding a circulator or diplexer) of the downlink OOK spectrum in the RX low-noise amplifier. The UWB 3.1-7 GHz transmitter can use either OOK or binary phase shift keying (BPSK) modulation schemes. The proposed FDT provides dual band 500-Mbps TX uplink data rate and 100 Mbps RX downlink data rate, and it is fully integrated into standard TSMC 0.18- µm CMOS within a total size of 0.8 mm(2). The total measured power consumption is 10.4 mW in full duplex mode (5 mW at 100 Mbps for RX, and 5.4 mW at 500 Mbps or 10.8 pJ/bit for TX). Additionally, a 3-coil inductive link along with on-chip power management circuits allows to powering up the implantable transceiver wirelessly by delivering 25 mW extracted from a 13.56-MHz carrier signal, at a total efficiency of 41.6%.


Assuntos
Amplificadores Eletrônicos , Eletrônica Médica , Próteses Neurais , Animais , Desenho de Equipamento , Humanos , Processamento de Sinais Assistido por Computador , Telemetria/instrumentação , Tecnologia sem Fio/instrumentação
19.
IEEE Trans Biomed Eng ; 62(1): 88-98, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25055379

RESUMO

Ultrawideband (UWB) short-range communication systems have proved to be valuable in medical technology, particularly for implanted devices, due to their low-power consumption, low cost, small size, and high data rates. Neural activity monitoring in the brain requires high data rate (800 kb/s per neural sensor), and we target a system supporting a large number of sensors, in particular, aggregate transmission above 430 Mb/s (∼512 sensors). Knowledge of channel behavior is required to determine the maximum allowable power to 1) respect ANSI guidelines for avoiding tissue damage, and 2) respect FCC guidelines on unlicensed transmissions. We utilize a realistic model of the biological channel to inform the design of antennas for the implanted transmitter and the external receiver under these requirements. Antennas placement is examined under two scenarios having contrasting power constraints. Performance of the system within the biological tissues is examined via simulation and experiment. Our miniaturized antennas, 12 mm ×12 mm, need worst-case receiver sensitivities of -38 and -30.5 dBm for the first and second scenarios, respectively. These sensitivities allow us to successfully detect signals transmitted through tissues in the 3.1-10.6-GHz UWB band.


Assuntos
Encéfalo/fisiologia , Eletroencefalografia/instrumentação , Modelos Biológicos , Próteses e Implantes , Telemetria/instrumentação , Tecnologia sem Fio/instrumentação , Animais , Simulação por Computador , Desenho Assistido por Computador , Fontes de Energia Elétrica , Desenho de Equipamento/métodos , Análise de Falha de Equipamento , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...