Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Phys Lett ; 124(4)2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38711922

RESUMO

A large-format mid-infrared single-photon imager with very low dark count rates would enable a broad range of applications in fields like astronomy and chemistry. Superconducting nanowire single-photon detectors (SNSPDs) are a mature photon-counting technology as demonstrated by their figures of merit such as high detection efficiencies and very low dark count rates. However, scaling SNSPDs to large array sizes for mid-infrared applications requires sophisticated readout architectures in addition to superconducting materials development. In this work, an SNSPD array design that combines a thermally coupled row-column multiplexing architecture with a thermally coupled time-of-flight transmission line was developed for mid-infrared applications. The design requires only six cables and can be scaled to larger array sizes. The demonstration of a 64-pixel array shows promising results for wavelengths between 3.4 µm and 10 µm, which will enable the use of this single-photon detector technology for a broad range of new applications.

2.
Appl Phys Lett ; 122(17)2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37461743

RESUMO

State readout of trapped-ion qubits with trap-integrated detectors can address important challenges for scalable quantum computing, but the strong rf electric fields used for trapping can impact detector performance. Here, we report on NbTiN superconducting nanowire single-photon detectors (SNSPDs) employing grounded aluminum mirrors as electrical shielding that are integrated into linear surface-electrode rf ion traps. The shielded SNSPDs can be operated at applied rf trapping potentials of up to 54 Vpeak at 70 MHz and temperatures of up to 6 K, with a maximum system detection efficiency of 68 %. This performance should be sufficient to enable parallel high-fidelity state readout of a wide range of trapped ion species in typical cryogenic apparatus.

3.
Phys Rev Appl ; 20(6)2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38618629

RESUMO

III-V semiconductor quantum dots (QDs) are near-ideal and versatile single-photon sources. Because of the capacity for monolithic integration with photonic structures as well as optoelectronic and optomechanical systems, they are proving useful in an increasingly broad application space. Here, we develop monolithic circular dielectric gratings on bulk substrates - as opposed to suspended or wafer-bonded substrates - for greatly improved photon collection from InAs quantum dots. The structures utilize a unique two-tiered distributed Bragg reflector (DBR) structure for vertical electric field confinement over a broad angular range. Opposing "openings" in the cavities induce strongly polarized QD luminescence without harming collection efficiencies. We describe how measured enhancements depend on the choice of collection optics. This is important to consider when evaluating the performance of any photonic structure that concentrates farfield emission intensity. Our cavity designs are useful for integrating QDs with other quantum systems that require bulk substrates, such as surface acoustic wave phonons.

4.
Opt Express ; 28(11): 16057-16072, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549437

RESUMO

W centers are trigonal defects generated by self-ion implantation in silicon that exhibit photoluminescence at 1.218 µm. We have shown previously that they can be used in waveguide-integrated all-silicon light-emitting diodes (LEDs). Here we optimize the implant energy, fluence and anneal conditions to maximize the photoluminescence intensity for W centers implanted in silicon-on-insulator, a substrate suitable for waveguide-integrated devices. After optimization, we observe near two orders of magnitude improvement in photoluminescence intensity relative to the conditions with the stopping range of the implanted ions at the center of the silicon device layer. The previously demonstrated waveguide-integrated LED used implant conditions with the stopping range at the center of this layer. We further show that such light sources can be manufactured at the 300-mm scale by demonstrating photoluminescence of similar intensity from 300 mm silicon-on-insulator wafers. The luminescence uniformity across the entire wafer is within the measurement error.

5.
Opt Express ; 28(7): 9521-9532, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225558

RESUMO

Nonlinear frequency conversion plays a crucial role in advancing the functionality of next-generation optical systems. Portable metrology references and quantum networks will demand highly efficient second-order nonlinear devices, and the intense nonlinear interactions of nanophotonic waveguides can be leveraged to meet these requirements. Here we demonstrate second harmonic generation (SHG) in GaAs-on-insulator waveguides with unprecedented efficiency of 40 W-1 for a single-pass device. This result is achieved by minimizing the propagation loss and optimizing phase-matching. We investigate surface-state absorption and design the waveguide geometry for modal phase-matching with tolerance to fabrication variation. A 2.0 µm pump is converted to a 1.0 µm signal in a length of 2.9 mm with a wide signal bandwidth of 148 GHz. Tunable and efficient operation is demonstrated over a temperature range of 45 °C with a slope of 0.24 nm/°C. Wafer-bonding between GaAs and SiO2 is optimized to minimize waveguide loss, and the devices are fabricated on 76 mm wafers with high uniformity. We expect this device to enable fully integrated self-referenced frequency combs and high-rate entangled photon pair generation.

6.
Opt Express ; 27(24): 35279-35289, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31878700

RESUMO

We present a 1024-element near-infrared imaging array of superconducting nanowire single photon detectors (SNSPDs) using a 32×32 row-column multiplexing architecture. The array has an active area of 0.96 × 0.96 mm, making it the largest SNSPD array reported to date in terms of both active area and pixel count. Using a 64-channel time-tagging readout, we have characterized the array's yield, efficiency, and timing resolution. Large arrays of SNSPDs are desirable for applications such as imaging, spectroscopy, or particle detection.

7.
Opt Express ; 26(12): 14859-14868, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114791

RESUMO

We evaluate the performance of a mid-infrared emission spectrometer operating at wavelengths between 1.5 and 6 µm based on an amorphous tungsten silicide (a-WSi) superconducting nanowire single-photon detector (SNSPD). We performed laser induced fluorescence spectroscopy of surface adsorbates with sub-monolayer sensitivity and sub-nanosecond temporal resolution. We discuss possible future improvements of the SNSPD-based infrared emission spectrometer and its potential applications in molecular science.

8.
Opt Express ; 26(12): 15519-15527, 2018 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-30114811

RESUMO

We present a short-wave infrared (SWIR) single photon camera based on a single superconducting nanowire single photon detector (SNSPD) and compressive imaging. We show SWIR single photon imaging at a megapixel resolution with a low signal-to-background ratio around 0.6, show SWIR video acquisition at 20 frames per second and 64x64 pixel video resolution, and demonstrate sub-nanosecond resolution time-of-flight imaging. All scenes were sampled by detecting only a small number of photons for each compressive sampling matrix. In principle, our technique can be used for imaging faint objects in the mid-IR regime.

9.
Phys Rev Lett ; 121(5): 057403, 2018 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-30118275

RESUMO

In atomically thin two-dimensional semiconductors such as transition metal dichalcogenides (TMDs), controlling the density and type of defects promises to be an effective approach for engineering light-matter interactions. We demonstrate that electron-beam irradiation is a simple tool for selectively introducing defect-bound exciton states associated with chalcogen vacancies in TMDs. Our first-principles calculations and time-resolved spectroscopy measurements of monolayer WSe_{2} reveal that these defect-bound excitons exhibit exceptional optical properties including a recombination lifetime approaching 200 ns and a valley lifetime longer than 1 µs. The ability to engineer the crystal lattice through electron irradiation provides a new approach for tailoring the optical response of TMDs for photonics, quantum optics, and valleytronics applications.

10.
Opt Lett ; 43(7): 1527-1530, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29601021

RESUMO

We report and characterize low-temperature, plasma-deposited deuterated silicon nitride films for nonlinear integrated photonics. With a peak processing temperature less than 300°C, it is back-end compatible with complementary metal-oxide semiconductor substrates. We achieve microresonators with a quality factor of up to 1.6×106 at 1552 nm and >1.2×106 throughout λ=1510-1600 nm, without annealing or stress management (film thickness of 920 nm). We then demonstrate the immediate utility of this platform in nonlinear photonics by generating a 1 THz free-spectral-range, 900 nm bandwidth modulation-instability microresonator Kerr comb and octave-spanning, supercontinuum-broadened spectra.

11.
Acc Chem Res ; 50(6): 1400-1409, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28573866

RESUMO

In contrast to UV photomultiplier tubes that are widely used in physical chemistry, mid-infrared detectors are notorious for poor sensitivity and slow time response. This helps explain why, despite the importance of infrared spectroscopy in molecular science, mid-infrared fluorescence is not more widely used. In recent years, several new technologies have been developed that open new experimental possibilities for research in the mid-infrared. In this Account, we present one of the more promising technologies, superconducting nanowire single photon detectors (SNSPDs) by sharing our experience with its use in a typical experiment carried out by physical chemists (laser-induced fluorescence) and comparing the SNSPD to a detector commonly used by physical chemists (InSb at LN Temperature). SNSPDs are fabricated from a thin film of superconducting metal, patterned into a meandering nanowire. The nanowire is cooled below its superconducting temperature, Tc, and held in a constant current circuit below the critical current necessary to destroy superconductivity, Ic. Upon absorption of a photon, the resulting heat is sufficient to destroy superconductivity across the entire width of the nanowire, an event that can be detected as a voltage pulse. In contrast to semiconductor-based detectors, which have a long wavelength cutoff determined by the band gap, the SNSPD exhibits single-photon sensitivity across the entire mid-IR spectrum. As these devices have not been used extensively outside the field of light detection technology research, one important goal of this Account is to provide practical details for the implementation of these devices in a physical chemistry laboratory. We provide extensive Supporting Information describing what is needed. This includes information on a liquid nitrogen cooled monochromator, the optical collection system including mid-infrared fibers, as well as a closed-cycle cryogenic cooler that reaches 0.3 K. We demonstrate the advantages of these detectors in a time-resolved laser-induced infrared fluorescence experiment on the energy pooling in crystalline CO overlayers formed on a NaCl(100) surface. We present dispersed fluorescence spectra recorded from 1.9 to 7.0 µm obtained by single-photon counting. We also estimate the sensitivity of this WSi-based detection system at 3 µm; the system's noise equivalent power (NEP) value is ∼10-3 of a conventional InSb photovoltaic device. Straightforward modifications are expected to provide another 100 000-fold improvement. We demonstrate that the temporal resolution of the experiment is limited only by the pulse duration of the laser used in this work (fwhm = 3.7 ns). The use of SNSPDs enables dramatically improved observations of energy pooling in cryogenic molecular crystals.

12.
Opt Express ; 25(9): 10322-10334, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468405

RESUMO

We present an approach to fabrication and packaging of integrated photonic devices that utilizes waveguide and detector layers deposited at near-ambient temperature. All lithography is performed with a 365 nm i-line stepper, facilitating low cost and high scalability. We have shown low-loss SiN waveguides, high-Q ring resonators, critically coupled ring resonators, 50/50 beam splitters, Mach-Zehnder interferometers (MZIs) and a process-agnostic fiber packaging scheme. We have further explored the utility of this process for applications in nonlinear optics and quantum photonics. We demonstrate spectral tailoring and octave-spanning supercontinuum generation as well as the integration of superconducting nanowire single photon detectors with MZIs and channel-dropping filters. The packaging approach is suitable for operation up to 160 °C as well as below 1 K. The process is well suited for augmentation of existing foundry capabilities or as a stand-alone process.

13.
Appl Phys Lett ; 111(14)2017.
Artigo em Inglês | MEDLINE | ID: mdl-36452265

RESUMO

We demonstrate cryogenic, electrically injected, waveguide-coupled Si light-emitting diodes (LEDs) operating at 1.22 µm. The active region of the LED consists of W centers implanted in the intrinsic region of a p-i-n diode. The LEDs are integrated on waveguides with superconducting nanowire single-photon detectors (SNSPDs). We demonstrate the scalability of this platform with an LED coupled to eleven SNSPDs in a single integrated photonic device.

14.
Phys Rev Lett ; 117(24): 240506, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-28009181

RESUMO

Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate and certify the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization-entangled pairs from parametric down-conversion and mapping one photon of each pair onto a rare-earth-ion-doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witnesses, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method, useful for the characterization of multiplexed quantum memories.

15.
Optica ; 3(12): 1397-1403, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29170754

RESUMO

The amplitude and phase of a material's nonlinear optical response provide insight into the underlying electronic dynamics that determine its optical properties. Phase-sensitive nonlinear spectroscopy techniques are widely implemented to explore these dynamics through demodulation of the complex optical signal field into its quadrature components; however, complete reconstruction of the optical response requires measuring both the amplitude and phase of each quadrature, which is often lost in standard detection methods. Here, we implement a heterodyne-detection scheme to fully reconstruct the amplitude and phase response of spectral hole-burning from InAs/GaAs charged quantum dots. We observe an ultra-narrow absorption profile and a corresponding dispersive lineshape of the phase, which reflect the nanosecond optical coherence time of the charged exciton transition. Simultaneously, the measurements are sensitive to electron spin relaxation dynamics on a millisecond timescale, as this manifests as a magnetic-field dependent delay of the amplitude and phase modulation. Appreciable amplitude modulation depth and nonlinear phase shift up to ~0.09×π radians (16°) are demonstrated, providing new possibilities for quadrature modulation at faint photon levels with several independent control parameters, including photon number, modulation frequency, detuning, and externally applied fields.

16.
Phys Rev Lett ; 115(25): 250402, 2015 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-26722906

RESUMO

We present a loophole-free violation of local realism using entangled photon pairs. We ensure that all relevant events in our Bell test are spacelike separated by placing the parties far enough apart and by using fast random number generators and high-speed polarization measurements. A high-quality polarization-entangled source of photons, combined with high-efficiency, low-noise, single-photon detectors, allows us to make measurements without requiring any fair-sampling assumptions. Using a hypothesis test, we compute p values as small as 5.9×10^{-9} for our Bell violation while maintaining the spacelike separation of our events. We estimate the degree to which a local realistic system could predict our measurement choices. Accounting for this predictability, our smallest adjusted p value is 2.3×10^{-7}. We therefore reject the hypothesis that local realism governs our experiment.

17.
Opt Express ; 22(3): 3244-60, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24663616

RESUMO

We measure second- and third-order temporal coherences, g((2))(τ) and g((3))(τ1,τ2), of an optically excited single-photon source: an InGaAs quantum dot in a microcavity pedestal. Increasing the optical excitation power leads to an increase in the measured count rate, and also an increase in multi-photon emission probability. We show that standard measurements of g((2)) provide limited information about this multi-photon probability, and that more information can be gained by simultaneously measuring g((3)). Experimental results are compared with a simple theoretical model to show that the observed antibunchings are consistent with an incoherent addition of two sources: 1) an ideal single-photon source that never emits multiple photons and 2) a background cavity emission having Poissonian photon number statistics. Spectrally resolved cross-correlation measurements between quantum-dot and cavity modes show that photons from these two sources are largely uncorrelated, further supporting the model. We also analyze the Hanbury Brown-Twiss interferometer implemented with two or three "click" detectors, and explore the conditions under which it can be used to accurately measure g((2))(τ) and g((3))(τ1,τ2).

18.
Opt Express ; 21(19): 22657-70, 2013 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-24104153

RESUMO

The integrated optical circuit is a promising architecture for the realization of complex quantum optical states and information networks. One element that is required for many of these applications is a high-efficiency photon detector capable of photon-number discrimination. We present an integrated photonic system in the telecom band at 1550 nm based on UV-written silica-on-silicon waveguides and modified transition-edge sensors capable of number resolution and over 40 % efficiency. Exploiting the mode transmission failure of these devices, we multiplex three detectors in series to demonstrate a combined 79 % ± 2 % detection efficiency with a single pass, and 88 % ± 3 % at the operating wavelength of an on-chip terminal reflection grating. Furthermore, our optical measurements clearly demonstrate no significant unexplained loss in this system due to scattering or reflections. This waveguide and detector design therefore allows the placement of number-resolving single-photon detectors of predictable efficiency at arbitrary locations within a photonic circuit - a capability that offers great potential for many quantum optical applications.

19.
Opt Express ; 19(24): 24434-47, 2011 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-22109470

RESUMO

We characterize a periodically poled KTP crystal that produces an entangled, two-mode, squeezed state with orthogonal polarizations, nearly identical, factorizable frequency modes, and few photons in unwanted frequency modes. We focus the pump beam to create a nearly circular joint spectral probability distribution between the two modes. After disentangling the two modes, we observe Hong-Ou-Mandel interference with a raw (background corrected) visibility of 86% (95%) when an 8.6 nm bandwidth spectral filter is applied. We measure second order photon correlations of the entangled and disentangled squeezed states with both superconducting nanowire single-photon detectors and photon-number-resolving transition-edge sensors. Both methods agree and verify that the detected modes contain the desired photon number distributions.


Assuntos
Iluminação/instrumentação , Refratometria/instrumentação , Telecomunicações/instrumentação , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
20.
Science ; 332(6034): 1170-3, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21636767

RESUMO

A consequence of the quantum mechanical uncertainty principle is that one may not discuss the path or "trajectory" that a quantum particle takes, because any measurement of position irrevocably disturbs the momentum, and vice versa. Using weak measurements, however, it is possible to operationally define a set of trajectories for an ensemble of quantum particles. We sent single photons emitted by a quantum dot through a double-slit interferometer and reconstructed these trajectories by performing a weak measurement of the photon momentum, postselected according to the result of a strong measurement of photon position in a series of planes. The results provide an observationally grounded description of the propagation of subensembles of quantum particles in a two-slit interferometer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...