Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 117
Filtrar
1.
Cell Rep ; 42(12): 113555, 2023 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-38088930

RESUMO

Ataxia telangiectasia mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) DNA damage response (DDR) kinases contain elastic domains. ATM also responds to reactive oxygen species (ROS) and ATR to nuclear mechanical stress. Mre11 mediates ATM activation following DNA damage; ATM mutations cause ataxia telangiectasia (A-T). Here, using in vivo imaging, electron microscopy, proteomic, and mechano-biology approaches, we study how ATM responds to mechanical stress. We report that cytoskeleton and ROS, but not Mre11, mediate ATM activation following cell deformation. ATM deficiency causes hyper-stiffness, stress fiber accumulation, Yes-associated protein (YAP) nuclear enrichment, plasma and nuclear membrane alterations during interstitial migration, and H3 hyper-methylation. ATM locates to the actin cytoskeleton and, following cytoskeleton stress, promotes phosphorylation of key cytoskeleton and chromatin regulators. Our data contribute to explain some clinical features of patients with A-T and pinpoint the existence of an integrated mechano-response in which ATM and ATR have distinct roles unrelated to their canonical DDR functions.


Assuntos
Ataxia Telangiectasia , Proteínas Serina-Treonina Quinases , Humanos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cromatina/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Proteômica , Proteínas de Ligação a DNA/metabolismo , Fosforilação , Dano ao DNA , Citoesqueleto/metabolismo
2.
Int J Mol Sci ; 24(22)2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-38003258

RESUMO

Inactivation of enzymes responsible for biosynthesis of the cell wall component of ADP-glycero-manno-heptose causes the development of oxidative stress and sensitivity of bacteria to antibiotics of a hydrophobic nature. The metabolic precursor of ADP-heptose is sedoheptulose-7-phosphate (S7P), an intermediate of the non-oxidative branch of the pentose phosphate pathway (PPP), in which ribose-5-phosphate and NADPH are generated. Inactivation of the first stage of ADP-heptose synthesis (ΔgmhA) prevents the outflow of S7P from the PPP, and this mutant is characterized by a reduced biosynthesis of NADPH and of the Glu-Cys-Gly tripeptide, glutathione, molecules known to be involved in the resistance to oxidative stress. We found that the derepression of purine biosynthesis (∆purR) normalizes the metabolic equilibrium in PPP in ΔgmhA mutants, suppressing the negative effects of gmhA mutation likely via the over-expression of the glycine-serine pathway that is under the negative control of PurR and might be responsible for the enhanced synthesis of NADPH and glutathione. Consistently, the activity of the soxRS system, as well as the level of glutathionylation and oxidation of proteins, indicative of oxidative stress, were reduced in the double ΔgmhAΔpurR mutant compared to the ΔgmhA mutant.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , NADP/metabolismo , Purinas/farmacologia , Purinas/metabolismo , Heptoses/química , Heptoses/metabolismo , Glutationa/metabolismo , Via de Pentose Fosfato
3.
Int J Mol Sci ; 24(20)2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37894724

RESUMO

The system of the four different human blood groups is based on the oligosaccharide antigens A or B, which are located on the surface of blood cells and other cells including endothelial cells, attached to the membrane proteins or lipids. After transfusion, the presence of these antigens on the apical surface of endothelial cells could induce an immunological reaction against the host. The final oligosaccharide sequence of AgA consists of Gal-GlcNAc-Gal (GalNAc)-Fuc. AgB contains Gal-GlcNAc-Gal (Gal)-Fuc. These antigens are synthesised in the Golgi complex (GC) using unique Golgi glycosylation enzymes (GGEs). People with AgA also synthesise antibodies against AgB (group A [II]). People with AgB synthesise antibodies against AgA (group B [III]). People expressing AgA together with AgB (group AB [IV]) do not have these antibodies, while people who do not express these antigens (group O [0; I]) synthesise antibodies against both antigens. Consequently, the antibodies are synthesised against antigens that apparently do not exist in the body. Here, we compared the prediction power of the main hypotheses explaining the formation of these antibodies, namely, the concept of natural antibodies, the gut bacteria-derived antibody hypothesis, and the antibodies formed as a result of glycosylation mistakes or de-sialylation of polysaccharide chains. We assume that when the GC is overloaded with lipids, other less specialised GGEs could make mistakes and synthesise the antigens of these blood groups. Alternatively, under these conditions, the chylomicrons formed in the enterocytes may, under this overload, linger in the post-Golgi compartment, which is temporarily connected to the endosomes. These compartments contain neuraminidases that can cleave off sialic acid, unmasking these blood antigens located below the acid and inducing the production of antibodies.


Assuntos
Células Endoteliais , Oligossacarídeos , Humanos , Sequência de Carboidratos , Células Endoteliais/metabolismo , Oligossacarídeos/metabolismo , Antígenos , Sistema ABO de Grupos Sanguíneos , Lipídeos
4.
J Cell Sci ; 136(20)2023 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-37732478

RESUMO

The Golgi complex comprises a connected ribbon of stacked cisternal membranes localized to the perinuclear region in most vertebrate cells. The position and morphology of this organelle depends upon interactions with microtubules and the actin cytoskeleton. In contrast, we know relatively little about the relationship of the Golgi complex with intermediate filaments (IFs). In this study, we show that the Golgi is in close physical proximity to vimentin IFs in cultured mouse and human cells. We also show that the trans-Golgi network coiled-coil protein GORAB can physically associate with vimentin IFs. Loss of vimentin and/or GORAB had a modest effect upon Golgi structure at the steady state. The Golgi underwent more rapid disassembly upon chemical disruption with brefeldin A or nocodazole, and slower reassembly upon drug washout, in vimentin knockout cells. Moreover, loss of vimentin caused reduced Golgi ribbon integrity when cells were cultured on high-stiffness hydrogels, which was exacerbated by loss of GORAB. These results indicate that vimentin IFs contribute to the structural stability of the Golgi complex and suggest a role for GORAB in this process.


Assuntos
Citoesqueleto , Filamentos Intermediários , Camundongos , Humanos , Animais , Filamentos Intermediários/metabolismo , Vimentina/metabolismo , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Complexo de Golgi/metabolismo , Mamíferos/metabolismo
5.
Int J Mol Sci ; 24(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37298509

RESUMO

Transport models are extremely important to map thousands of proteins and their interactions inside a cell. The transport pathways of luminal and at least initially soluble secretory proteins synthesized in the endoplasmic reticulum can be divided into two groups: the so-called constitutive secretory pathway and regulated secretion (RS) pathway, in which the RS proteins pass through the Golgi complex and are accumulated into storage/secretion granules (SGs). Their contents are released when stimuli trigger the fusion of SGs with the plasma membrane (PM). In specialized exocrine, endocrine, and nerve cells, the RS proteins pass through the baso-lateral plasmalemma. In polarized cells, the RS proteins secrete through the apical PM. This exocytosis of the RS proteins increases in response to external stimuli. Here, we analyze RS in goblet cells to try to understand the transport model that can be used for the explanation of the literature data related to the intracellular transport of their mucins.


Assuntos
Células Caliciformes , Proteínas , Células Caliciformes/metabolismo , Transporte Biológico , Proteínas/metabolismo , Mucinas/metabolismo , Membrana Celular/metabolismo , Complexo de Golgi/metabolismo , Exocitose/fisiologia
6.
Entropy (Basel) ; 25(5)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37238526

RESUMO

Tribo-films form on surfaces as a result of friction and wear. The wear rate is dependent on the frictional processes, which develop within these tribo-films. Physical-chemical processes with negative entropy production enhance reduction in the wear rate. Such processes intensively develop once self-organization with dissipative structure formation is initiated. This process leads to significant wear rate reduction. Self-organization can only occur after the system loses thermodynamic stability. This article investigates the behavior of entropy production that results in the loss of thermodynamic stability in order to establish the prevalence of friction modes required for self-organization. Tribo-films with dissipative structures form on the friction surface as a consequence of a self-organization process, resulting in an overall wear rate reduction. It has been demonstrated that a tribo-system begins to lose its thermodynamic stability once it reaches the point of maximum entropy production during the running-in stage.

7.
Nucleic Acids Res ; 51(10): 5193-5209, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37070602

RESUMO

The long non-coding RNA EPR is expressed in epithelial tissues, binds to chromatin and controls distinct biological activities in mouse mammary gland cells. Because of its high expression in the intestine, in this study we have generated a colon-specific conditional targeted deletion (EPR cKO) to evaluate EPR in vivo functions in mice. EPR cKO mice display epithelium hyperproliferation, impaired mucus production and secretion, as well as inflammatory infiltration in the proximal portion of the large intestine. RNA sequencing analysis reveals a rearrangement of the colon crypt transcriptome with strong reduction of goblet cell-specific factors including those involved in the synthesis, assembly, transport and control of mucus proteins. Further, colon mucosa integrity and permeability are impaired in EPR cKO mice, and this results in higher susceptibility to dextran sodium sulfate (DSS)-induced colitis and tumor formation. Human EPR is down-regulated in human cancer cell lines as well as in human cancers, and overexpression of EPR in a colon cancer cell line results in enhanced expression of pro-apoptotic genes. Mechanistically, we show that EPR directly interacts with select genes involved in mucus metabolism whose expression is reduced in EPR cKO mice and that EPR deletion causes tridimensional chromatin organization changes.


Assuntos
Transformação Celular Neoplásica , Inflamação , Muco , RNA Longo não Codificante , Animais , Humanos , Camundongos , Transformação Celular Neoplásica/imunologia , Colo/metabolismo , Modelos Animais de Doenças , Inflamação/imunologia , Mucosa Intestinal/metabolismo , Camundongos Endogâmicos C57BL , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
8.
Aging Dis ; 14(2): 309-318, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37008059

RESUMO

The pathogenesis of Alzheimer's disease (AD) is associated with the formation of cerebral amyloid plaques, the main components of which are the modified Aß molecules as well as the metal ions. Aß isomerized at Asp7 residue (isoD7-Aß) is the most abundant isoform in amyloid plaques. We hypothesized that the pathogenic effect of isoD7-Aß is due to the formation of zinc-dependent oligomers, and that this interaction can be disrupted by the rationally designed tetrapeptide (HAEE). Here, we utilized surface plasmon resonance, nuclear magnetic resonance, and molecular dynamics simulation to demonstrate Zn2+-dependent oligomerization of isoD7-Aß and the formation of a stable isoD7-Aß:Zn2+:HAEE complex incapable of forming oligomers. To demonstrate the physiological importance of zinc-dependent isoD7-Aß oligomerization and the ability of HAEE to interfere with this process at the organismal level, we employed transgenic nematodes overexpressing human Aß. We show that the presence of isoD7-Aß in the medium triggers extensive amyloidosis that occurs in a Zn2+-dependent manner, enhances paralysis, and shortens the animals' lifespan. Exogenous HAEE completely reverses these pathological effects of isoD7-Aß. We conclude that the synergistic action of isoD7-Aß and Zn2+ promotes Aß aggregation and that the selected small molecules capable of interrupting this process, such as HAEE, can potentially serve as anti-amyloid therapeutics.

9.
Int J Mol Sci ; 24(8)2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37108712

RESUMO

Today, the future paradigm of intracellular transport could be based on four competing models, namely the vesicular model, the cisterna maturation-progression model, the diffusion model, and the kiss-and-run model [...].


Assuntos
Complexo de Golgi , Membranas Intracelulares , Complexo de Golgi/metabolismo , Transporte Biológico , Difusão , Membranas Intracelulares/metabolismo
10.
Int J Mol Sci ; 24(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36901955

RESUMO

SARS-CoV-2 is responsible for the COVID-19 pandemic. The structure of SARS-CoV-2 and most of its proteins of have been deciphered. SARS-CoV-2 enters cells through the endocytic pathway and perforates the endosomes' membranes, and its (+) RNA appears in the cytosol. Then, SARS-CoV-2 starts to use the protein machines of host cells and their membranes for its biogenesis. SARS-CoV-2 generates a replication organelle in the reticulo-vesicular network of the zippered endoplasmic reticulum and double membrane vesicles. Then, viral proteins start to oligomerize and are subjected to budding within the ER exit sites, and its virions are passed through the Golgi complex, where the proteins are subjected to glycosylation and appear in post-Golgi carriers. After their fusion with the plasma membrane, glycosylated virions are secreted into the lumen of airways or (seemingly rarely) into the space between epithelial cells. This review focuses on the biology of SARS-CoV-2's interactions with cells and its transport within cells. Our analysis revealed a significant number of unclear points related to intracellular transport in SARS-CoV-2-infected cells.


Assuntos
COVID-19 , Humanos , COVID-19/metabolismo , SARS-CoV-2 , Pandemias , Transporte Biológico , Endossomos/metabolismo
11.
Nat Struct Mol Biol ; 30(5): 600-607, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36997761

RESUMO

Second messenger (p)ppGpp (collectively guanosine tetraphosphate and guanosine pentaphosphate) mediates bacterial adaptation to nutritional stress by modulating transcription initiation. More recently, ppGpp has been implicated in coupling transcription and DNA repair; however, the mechanism of ppGpp engagement remained elusive. Here we present structural, biochemical and genetic evidence that ppGpp controls Escherichia coli RNA polymerase (RNAP) during elongation via a specific site that is nonfunctional during initiation. Structure-guided mutagenesis renders the elongation (but not initiation) complex unresponsive to ppGpp and increases bacterial sensitivity to genotoxic agents and ultraviolet radiation. Thus, ppGpp binds RNAP at sites with distinct functions in initiation and elongation, with the latter being important for promoting DNA repair. Our data provide insights on the molecular mechanism of ppGpp-mediated adaptation during stress, and further highlight the intricate relationships between genome stability, stress responses and transcription.


Assuntos
Proteínas de Escherichia coli , Guanosina Tetrafosfato , Guanosina Tetrafosfato/química , Guanosina Tetrafosfato/genética , Guanosina Tetrafosfato/metabolismo , Proteínas de Escherichia coli/metabolismo , Raios Ultravioleta , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Reparo do DNA , Transcrição Gênica , Regulação Bacteriana da Expressão Gênica
12.
Int J Mol Sci ; 24(6)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36982865

RESUMO

The main component of blood and lymphatic vessels is the endothelium covering their luminal surface. It plays a significant role in many cardiovascular diseases. Tremendous progress has been made in deciphering of molecular mechanisms involved into intracellular transport. However, molecular machines are mostly characterized in vitro. It is important to adapt this knowledge to the situation existing in tissues and organs. Moreover, contradictions have accumulated within the field related to the function of endothelial cells (ECs) and their trans-endothelial pathways. This has induced necessity for the re-evaluation of several mechanisms related to the function of vascular ECs and intracellular transport and transcytosis there. Here, we analyze available data related to intracellular transport within ECs and re-examine several hypotheses about the role of different mechanisms in transcytosis across ECs. We propose a new classification of vascular endothelium and hypotheses related to the functional role of caveolae and mechanisms of lipid transport through ECs.


Assuntos
Células Endoteliais , Transcitose , Células Endoteliais/metabolismo , Transporte Biológico/fisiologia , Cavéolas/metabolismo , Membranas Intracelulares/metabolismo , Endotélio Vascular/metabolismo
13.
Nat Commun ; 14(1): 1432, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36918565

RESUMO

Phosphatidylinositol-5-phosphate (PtdIns5P)-4-kinases (PIP4Ks) are stress-regulated phosphoinositide kinases able to phosphorylate PtdIns5P to PtdIns(4,5)P2. In cancer patients their expression is typically associated with bad prognosis. Among the three PIP4K isoforms expressed in mammalian cells, PIP4K2B is the one with more prominent nuclear localisation. Here, we unveil the role of PIP4K2B as a mechanoresponsive enzyme. PIP4K2B protein level strongly decreases in cells growing on soft substrates. Its direct silencing or pharmacological inhibition, mimicking cell response to softness, triggers a concomitant reduction of the epigenetic regulator UHRF1 and induces changes in nuclear polarity, nuclear envelope tension and chromatin compaction. This substantial rewiring of the nucleus mechanical state drives YAP cytoplasmic retention and impairment of its activity as transcriptional regulator, finally leading to defects in cell spreading and motility. Since YAP signalling is essential for initiation and growth of human malignancies, our data suggest that potential therapeutic approaches targeting PIP4K2B could be beneficial in the control of the altered mechanical properties of cancer cells.


Assuntos
Heterocromatina , Neoplasias , Humanos , 1-Fosfatidilinositol 4-Quinase/metabolismo , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Núcleo Celular/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo , Neoplasias/metabolismo , Fosfatos de Fosfatidilinositol/metabolismo , Isoformas de Proteínas/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
14.
Int J Mol Sci ; 24(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36674888

RESUMO

The Golgi complex (GC) is the main station along the cell biosecretory pathway. Until now, mechanisms of intra-Golgi transport (IGT) have remained unclear. Herein, we confirm that the goodness-of-fit of the regression lines describing the exit of a cargo from the Golgi zone (GZ) corresponds to an exponential decay. When the GC was empty before the re-initiation of the intra-Golgi transport, this parameter of the curves describing the kinetics of different cargoes (which are deleted in Golgi vesicles) with different diffusional mobilities within the GZ as well as their exit from the GZ was maximal for the piecewise nonlinear regression, wherein the first segment was horizontal, while the second segment was similar to the exponential decay. The kinetic curve describing cargo exit from the GC per se resembled a linear decay. The Monte-Carlo simulation revealed that such curves reflect the role of microtubule growth in cells with a central GC or the random hovering of ministacks in cells lacking a microtubule. The synchronization of cargo exit from the GC already filled with a cargo using the wave synchronization protocol did not reveal the equilibration of cargo within a Golgi stack, which would be expected from the diffusion model (DM) of IGT. Moreover, not all cisternae are connected to each other in mini-stacks that are transporting membrane proteins. Finally, the kinetics of post-Golgi carriers and the important role of SNAREs for IGT at different level of IGT also argue against the DM of IGT.


Assuntos
Complexo de Golgi , Transporte Biológico , Difusão , Complexo de Golgi/metabolismo , Transporte Proteico
16.
Nat Mater ; 22(5): 644-655, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36581770

RESUMO

The process in which locally confined epithelial malignancies progressively evolve into invasive cancers is often promoted by unjamming, a phase transition from a solid-like to a liquid-like state, which occurs in various tissues. Whether this tissue-level mechanical transition impacts phenotypes during carcinoma progression remains unclear. Here we report that the large fluctuations in cell density that accompany unjamming result in repeated mechanical deformations of cells and nuclei. This triggers a cellular mechano-protective mechanism involving an increase in nuclear size and rigidity, heterochromatin redistribution and remodelling of the perinuclear actin architecture into actin rings. The chronic strains and stresses associated with unjamming together with the reduction of Lamin B1 levels eventually result in DNA damage and nuclear envelope ruptures, with the release of cytosolic DNA that activates a cGAS-STING (cyclic GMP-AMP synthase-signalling adaptor stimulator of interferon genes)-dependent cytosolic DNA response gene program. This mechanically driven transcriptional rewiring ultimately alters the cell state, with the emergence of malignant traits, including epithelial-to-mesenchymal plasticity phenotypes and chemoresistance in invasive breast carcinoma.


Assuntos
Actinas , Neoplasias , DNA , Nucleotidiltransferases/genética , Nucleotidiltransferases/metabolismo , Citosol/metabolismo , Transdução de Sinais
17.
Methods Mol Biol ; 2557: 161-209, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36512216

RESUMO

The Golgi complex (GC) is an essential organelle of the eukaryotic exocytic pathway. It has a very complexed structure and thus localization of its resident proteins is not trivial. Fast development of microscopic methods generates a huge difficulty for Golgi researchers to select the best protocol to use. Modern methods of light microscopy, such as super-resolution light microscopy (SRLM) and electron microscopy (EM), open new possibilities in analysis of various biological structures at organelle, cell, and organ levels. Nowadays, new generation of EM methods became available for the study of the GC; these include three-dimensional EM (3DEM), correlative light-EM (CLEM), immune EM, and new estimators within stereology that allow realization of maximal goal of any morphological study, namely, to achieve a three-dimensional model of the sample with optimal level of resolution and quantitative determination of its chemical composition. Methods of 3DEM have partially overlapping capabilities. This requires a careful comparison of these methods, identification of their strengths and weaknesses, and formulation of recommendations for their application to cell or tissue samples. Here, we present an overview of 3DEM methods for the study of the GC and some basics for how the images are formed and how the image quality can be improved.


Assuntos
Elétrons , Complexo de Golgi , Microscopia Eletrônica , Complexo de Golgi/ultraestrutura , Organelas , Algoritmos
18.
Materials (Basel) ; 15(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499891

RESUMO

Due to the engine's start/stop system and a sudden increase in speed or load, the development of alloys suitable for engine bearings requires excellent tribological properties and high mechanical properties. Including additional elements in the Al-rich matrix of these anti-friction alloys should strengthen their tribological properties. The novelty of this work is in constructing a suitable artificial neural network (ANN) architecture for highly accurate modeling and prediction of the mechanical properties of the bearing aluminum-based alloys and thus optimizing the chemical composition for high mechanical properties. In addition, the study points out the impact of soft and more solid phases on the mechanical properties of these alloys. For this purpose, a huge number of alloys (198 alloys) with different chemical compositions combined from Sn, Pb, Cu, Mg, Zn, Si, Ni, Bi, Ti, Mn, Fe, and Al) were cast, annealed, and tested for determining their mechanical properties. The annealed sample microstructure analysis revealed the formation of soft structural inclusions (Sn-rich, Sn-Pb, and Pb-Sn phases) and solid phase inclusions (strengthened phase, Al2Cu). The mechanical properties of ultimate tensile strength (σu), Brinell hardness (HB), and elongation to failure (δ) were used as control responses for constructing the ANN network. The constructed network was optimized by attempting different network architecture designs to reach minimal errors. Besides the excellent tribological characteristics of the designed set of alloys, soft inclusions based on Sn and Pb and solid-phase Cu inclusions fulfilled the necessary level of mechanical properties for anti-friction alloys; the maximum mechanical properties reached were: σu = 197 ± 7 MPa, HB = 77 ± 4, and δ = 20.3 ± 1.0%. The optimal ANN architecture with the lowest errors (correlation coefficient (R) = 0.94, root mean square error (RMSE) = 3.5, and average actual relative error (AARE) = 1.0%) had two hidden layers with 20 neurons. The model was validated by additional experiments, and the characteristics of the new alloys were accurately predicted with a low level of errors: R ≥ 0.97, RMSE = 1-2.65, and AARE ˂ 10%.

19.
Int J Mol Sci ; 23(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36430658

RESUMO

The transcytosis of lipids through enterocytes occurs through the delivery of lipid micelles to the microvilli of enterocytes, consumption of lipid derivates by the apical plasma membrane (PM) and then their delivery to the membrane of the smooth ER attached to the basolateral PM. The SER forms immature chylomicrons (iChMs) in the ER lumen. iChMs are delivered at the Golgi complex (GC) where they are subjected to additional glycosylation resulting in maturation of iChMs. ChMs are secreted into the intercellular space and delivered into the lumen of lymphatic capillaries (LCs). The overloading of enterocytes with lipids induces the formation of lipid droplets inside the lipid bilayer of the ER membranes and transcytosis becomes slower. Here, we examined components of the enterocyte-to-lymphatic barriers in newly born rats before the first feeding and after it. In contrast to adult animals, enterocytes of newborns rats exhibited apical endocytosis and a well-developed subapical endosomal tubular network. These enterocytes uptake membranes from amniotic fluid. Then these membranes are transported across the polarized GC and secreted into the intercellular space. The enterocytes did not contain COPII-coated buds on the granular ER. The endothelium of blood capillaries situated near the enterocytes contained only a few fenestrae. The LCs were similar to those in adult animals. The first feeding induced specific alterations of enterocytes, which were similar to those observed after the lipid overloading of enterocytes in adult rats. Enlarged chylomicrons were stopped at the level of the LAMP2 and Neu1 positive post-Golgi structures, secreted, fused, delivered to the interstitial space, captured by the LCs and transported to the lymph node, inducing the movement of macrophages from lymphatic follicles into its sinuses. The macrophages captured the ChMs, preventing their delivery into the blood.


Assuntos
Quilomícrons , Enterócitos , Ratos , Animais , Enterócitos/metabolismo , Animais Recém-Nascidos , Quilomícrons/metabolismo , Transporte Biológico , Microvilosidades/metabolismo
20.
Biomedicines ; 10(11)2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36359378

RESUMO

Atherosclerosis is a complex non-monogenic disease related to endothelial damage in elastic-type arteries and incorrect feeding. Here, using cryodamage of endothelial cells (ECs) of rat abdominal aorta, we examined the role of the EC basement membrane (BM) for re-endothelization endothelial regeneration and its ability to capture low density lipoproteins (LDLs). Regeneration of endothelium induced thickening of the ECBM. Secretion of the BM components occurred in the G2-phase. Multiple regenerations, as well as arterial hypertension and aging, also led to the thickening of the BM. Under these conditions, the speed of re-endothelialization increased. The thick BM captured more LDLs. LDLs formed after overloading of rats with lipids acquired higher affinity to the BM, presumably due to the prolonged transport of chylomicrons through neuraminidase-positive endo-lysosomes. These data provide new molecular and cellular mechanisms of atherogenesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...