Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Light Sci Appl ; 13(1): 68, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38453886

RESUMO

The emergence of van der Waals (vdW) materials resulted in the discovery of their high optical, mechanical, and electronic anisotropic properties, immediately enabling countless novel phenomena and applications. Such success inspired an intensive search for the highest possible anisotropic properties among vdW materials. Furthermore, the identification of the most promising among the huge family of vdW materials is a challenging quest requiring innovative approaches. Here, we suggest an easy-to-use method for such a survey based on the crystallographic geometrical perspective of vdW materials followed by their optical characterization. Using our approach, we found As2S3 as a highly anisotropic vdW material. It demonstrates high in-plane optical anisotropy that is ~20% larger than for rutile and over two times as large as calcite, high refractive index, and transparency in the visible range, overcoming the century-long record set by rutile. Given these benefits, As2S3 opens a pathway towards next-generation nanophotonics as demonstrated by an ultrathin true zero-order quarter-wave plate that combines classical and the Fabry-Pérot optical phase accumulations. Hence, our approach provides an effective and easy-to-use method to find vdW materials with the utmost anisotropic properties.

2.
Nano Lett ; 23(20): 9461-9467, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37811878

RESUMO

The physics of electrons, photons, and their plasmonic interactions change dramatically when one or more dimensions are reduced to atomic-level thicknesses. For example, graphene exhibits unique electrical, plasmonic, and optical properties. Likewise, atomic-thick metal films are expected to exhibit extraordinary quantum optical properties. Several methods of growing ultrathin metal films were demonstrated, but the quality of the obtained films was much worse compared to bulk films. In this work, we propose a new method of making ultrathin gold films that are close in their properties to bulk gold films. Excellent plasmonic properties are revealed by directly observing quasi-short- and quasi-long-range plasmons in such a film via scanning near-field optical microscopy. The results pave the way for the use of ultrathin gold films in flexible and transparent nanophotonics and optoelectronic applications.

3.
Nanomaterials (Basel) ; 13(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37177004

RESUMO

Materials with high optical constants are of paramount importance for efficient light manipulation in nanophotonics applications. Recent advances in materials science have revealed that van der Waals (vdW) materials have large optical responses owing to strong in-plane covalent bonding and weak out-of-plane vdW interactions. However, the optical constants of vdW materials depend on numerous factors, e.g., synthesis and transfer method. Here, we demonstrate that in a broad spectral range (290-3300 nm) the refractive index n and the extinction coefficient k of Bi2Se3 are almost independent of synthesis technology, with only a ~10% difference in n and k between synthesis approaches, unlike other vdW materials, such as MoS2, which has a ~60% difference between synthesis approaches. As a practical demonstration, we showed, using the examples of biosensors and therapeutic nanoparticles, that this slight difference in optical constants results in reproducible efficiency in Bi2Se3-based photonic devices.

4.
Nanomaterials (Basel) ; 13(8)2023 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-37110961

RESUMO

Ultrathin metal films are an essential platform for two-dimensional (2D) material compatible and flexible optoelectronics. Characterization of thin and ultrathin film-based devices requires a thorough consideration of the crystalline structure and local optical and electrical properties of the metal-2D material interface since they could be dramatically different from the bulk material. Recently, it was demonstrated that the growth of gold on the chemical vapor deposited monolayer MoS2 leads to a continuous metal film that preserves plasmonic optical response and conductivity even at thicknesses below 10 nm. Here, we examined the optical response and morphology of ultrathin gold films deposited on exfoliated MoS2 crystal flakes on the SiO2/Si substrate via scattering-type scanning near-field optical microscopy (s-SNOM). We demonstrate a direct relationship between the ability of thin film to support guided surface plasmon polaritons (SPP) and the s-SNOM signal intensity with a very high spatial resolution. Using this relationship, we observed the evolution of the structure of gold films grown on SiO2 and MoS2 with an increase in thickness. The continuous morphology and superior ability with respect to supporting SPPs of the ultrathin (≤10 nm) gold on MoS2 is further confirmed with scanning electron microscopy and direct observation of SPP fringes via s-SNOM. Our results establish s-SNOM as a tool for testing plasmonic films and motivate further theoretical research on the impact of the interplay between the guided modes and the local optical properties on the s-SNOM signal.

5.
Nanomaterials (Basel) ; 11(12)2021 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-34947554

RESUMO

The development of efficient plasmonic nanostructures with controlled and reproducible surface-enhanced Raman spectroscopy (SERS) signals is an important task for the evolution of ultrasensitive sensor-related methods. One of the methods to improving the characteristics of nanostructures is the development of hybrid structures that include several types of materials. Here, we experimentally investigate ultrathin gold films (3-9 nm) near the percolation threshold on Si/Au/SiO2 and Si/Au/SiO2/graphene multilayer structures. The occurring field enhanced (FE) effects were characterized by a recording of SERS signal from Crystal Violet dye. In this geometry, the overall FE principally benefits from the combination of two mechanisms. The first one is associated with plasmon excitation in Au clusters located closest to each other. The second is due to the gap plasmons' excitation in a thin dielectric layer between the mirror and corrugated gold layers. Experimentally obtained SERS signals from sandwiched structures fabricated with Au film of 100 nm as a reflector, dielectric SiO2 spacer of 50 nm and ultrathin gold atop could reach SERS enhancements of up to around seven times relative to gold films near the percolation threshold deposited on a standard glass substrate. The close contiguity of the analyte to graphene and nanostructured Au efficiently quenches the fluorescent background of the model compound. The obtained result shows that the strategy of combining ultrathin nano-island gold films near the percolation threshold with gap plasmon resonances is promising for the design of highly efficient SERS substrates for potential applications in ultrasensitive Raman detection.

6.
Nanomaterials (Basel) ; 11(12)2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34947618

RESUMO

Noble transition metal dichalcogenides (TMDCs) such as PtS2 and PtSe2 show significant potential in a wide range of optoelectronic and photonic applications. Noble TMDCs, unlike standard TMDCs such as MoS2 and WS2, operate in the ultrawide spectral range from ultraviolet to mid-infrared wavelengths; however, their properties remain largely unexplored. Here, we measured the broadband (245-3300 nm) optical constants of ultrathin PtS2 and PtSe2 films to eliminate this gap and provide a foundation for optoelectronic device simulation. We discovered their broadband absorption and high refractive index both theoretically and experimentally. Based on first-principle calculations, we also predicted their giant out-of-plane optical anisotropy for monocrystals. As a practical illustration of the obtained optical properties, we demonstrated surface plasmon resonance biosensors with PtS2 or PtSe2 functional layers, which dramatically improves sensor sensitivity by 60 and 30%, respectively.

7.
J Acoust Soc Am ; 148(3): 1391, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33003870

RESUMO

The results of experimental studies of the acoustic impedance of orifices in the plate in the impedance tube, using the transfer functions method in a wide range of sound pressure levels, are presented. Dependencies of the orifice impedance on its diameter in nonlinear regimes are obtained. It is established that in order to obtain reliable estimates of the orifice impedance, the particle velocity in the orifice should be determined by measurements. It is shown that the diameter of the orifice does not affect its acoustic impedance in the developed nonlinearity regimes. This impedance depends only on the particle velocity in the orifice, and this dependence is nonlinear.

8.
Int J Biol Macromol ; 159: 896-903, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32445820

RESUMO

New details of chemical structure of Araucaria lignin are the focus of this paper, since Araucaria is a relict plant which fossils are dated by the Permian period. Quantitative chemical analysis, FTIR, EPR and 2D NMR spectroscopies, Py-GC/MS and nitrobenzene oxidation have been used to characterize the Araucaria lignin. This work highlighted the structural features of the lignin of Araucaria, which distinguish it from modern coniferous (gymnosperm) lignins. This lignin exhibits pronounced paramagnetic properties with the concentration of paramagnetic centers of 3.0 × 1017 spin/g, the value of g-factor of 2.0036 corresponds to the phenoxyl radical. The Araucaria lignin is apparently unique since it does not belong to the known G, GS or GSH types. For the first time it was quantitatively proven that he lignin of Araucaria was assigned to compositionally heterogeneous GH lignins, which is not typical for modern lignins.


Assuntos
Biopolímeros/química , Lignina/química , Estrutura Molecular , Extratos Vegetais/química , Cromatografia Gasosa-Espectrometria de Massas , Espectroscopia de Infravermelho com Transformada de Fourier
9.
J Med Genet ; 53(8): 511-22, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-26989088

RESUMO

OBJECTIVE: We aimed to delineate the neurodevelopmental spectrum associated with SYNGAP1 mutations and to investigate genotype-phenotype correlations. METHODS: We sequenced the exome or screened the exons of SYNGAP1 in a total of 251 patients with neurodevelopmental disorders. Molecular and clinical data from patients with SYNGAP1 mutations from other centres were also collected, focusing on developmental aspects and the associated epilepsy phenotype. A review of SYNGAP1 mutations published in the literature was also performed. RESULTS: We describe 17 unrelated affected individuals carrying 13 different novel loss-of-function SYNGAP1 mutations. Developmental delay was the first manifestation of SYNGAP1-related encephalopathy; intellectual disability became progressively obvious and was associated with autistic behaviours in eight patients. Hypotonia and unstable gait were frequent associated neurological features. With the exception of one patient who experienced a single seizure, all patients had epilepsy, characterised by falls or head drops due to atonic or myoclonic seizures, (myoclonic) absences and/or eyelid myoclonia. Triggers of seizures were frequent (n=7). Seizures were pharmacoresistant in half of the patients. The severity of the epilepsy did not correlate with the presence of autistic features or with the severity of cognitive impairment. Mutations were distributed throughout the gene, but spared spliced 3' and 5' exons. Seizures in patients with mutations in exons 4-5 were more pharmacoresponsive than in patients with mutations in exons 8-15. CONCLUSIONS: SYNGAP1 encephalopathy is characterised by early neurodevelopmental delay typically preceding the onset of a relatively recognisable epilepsy comprising generalised seizures (absences, myoclonic jerks) and frequent triggers.

10.
J Acoust Soc Am ; 112(2): 441-5, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12186024

RESUMO

It is demonstrated that the differentially heated stack, the heart of all thermoacoustic devices, provides a source of streaming additional to those associated with Reynolds stresses in quasi-unidirectional gas flow. This source of streaming is related to temperature-induced asymmetry in the generation of vortices and turbulence near the stack ends. The asymmetry of the hydrodynamic effects in an otherwise geometrically symmetric stack is due to the temperature difference between stack ends. The proposed mechanism of streaming excitation in annular thermoacoustic devices operates even in the absence of thermo-viscous interaction of sound waves with resonator walls.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...