Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Pharm ; 615: 121510, 2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35085728

RESUMO

Keeping up with cutting edge research in the field of drug delivery, the overall goal of this study was to develop innovative electrospun nanofibers loaded with ionic liquids (ILs) as active pharmaceutical ingredients (APIs). For the first time, a novel approach was examined by combining biocompatible polymer, poly (ethylene oxide) (PEO), and pharmaceutical ILs in an electrospinning process to develop nanofibers with high drug loading (up to 47%). Firstly, two well-known local anaesthetic drugs, lidocaine and procaine, were modified into ILs with the salicylate, forming lidocaine salicylate and procaine salicylate. Its dual-functional nature and increased water solubility for 4- to 10-fold depending on the drug used contribute to overcoming current hurdles encountered by APIs such as poor solubility, low bioavailability, and polymorphism of the solid-state. Nanofibers were formulated using solutions tested for density, viscosity, electrical conductivity, and small-angle X-ray scattering by varying PEO molecular weight and the PEO to IL mass ratio. Scanning electron microscopy showed the surface morphology of the obtained nanofibers, while Fourier transform infrared spectroscopy and differential scanning calorimetry confirmed IL in the nanofibers in an amorphous state. Thus, nanofibers with incorporated IL represent well-known drugs in the new form and a novel dermal application delivery system.


Assuntos
Líquidos Iônicos , Nanofibras , Preparações Farmacêuticas , Sistemas de Liberação de Medicamentos , Solubilidade , Espectroscopia de Infravermelho com Transformada de Fourier
2.
Int J Pharm ; 580: 119199, 2020 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-32147494

RESUMO

Previously, we reported on the surfactant cetylpyridinium chloride (CPC) as a crosslinker of alginate for the formation of stable polyelectrolyte-surfactant-complex nanoparticles. Here, we evaluate this system for increased solubility of a poorly soluble drug. The aim was to use CPC for solubilisation of ibuprofen and to use the micellar associates formed for alginate complexation and nanoparticle formation. We acquired deeper insights into the entropy led interactions between alginate, CPC and ibuprofen. Stable nanoparticles were formed across limited surfactant-to-polyelectrolyte molar ratios, with ~150 nm hydrodynamic diameter, monodispersed distribution, and negative zeta potential (-40 mV), with 34% ibuprofen loading. Their structure was obtained using small-angle X-ray scattering, which indicated disordered micellar associates when ibuprofen was incorporated. This resulted in nanoparticles with a complex nanostructured composition, as shown by transmission electron microscopy. Drug release from ibuprofen-cetylpyridinium-alginate nanoparticles was not hindered by alginate, and was similar to the release kinetics from ibuprofen-CPC solubilisates. These innovative carriers developed as polyelectrolyte-surfactant complexes can be used for solubilisation of poorly soluble drugs, where the surfactant simultaneously increases the solubility of the drug at concentrations below its critical micellar concentration and crosslinks the polyelectrolyte to form nanoparticles.


Assuntos
Alginatos/metabolismo , Cetilpiridínio/metabolismo , Ibuprofeno/metabolismo , Nanopartículas/metabolismo , Polieletrólitos/metabolismo , Tensoativos/metabolismo , Alginatos/administração & dosagem , Alginatos/química , Cetilpiridínio/administração & dosagem , Cetilpiridínio/química , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos , Ibuprofeno/administração & dosagem , Ibuprofeno/química , Nanopartículas/administração & dosagem , Nanopartículas/química , Polieletrólitos/administração & dosagem , Polieletrólitos/química , Espalhamento a Baixo Ângulo , Solubilidade , Tensoativos/administração & dosagem , Tensoativos/química , Termodinâmica
3.
Polymers (Basel) ; 11(4)2019 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995752

RESUMO

Alginate is a promising biocompatible and biodegradable polymer for production of nanofibers for drug delivery and tissue engineering. However, alginate is difficult to electrospin due to its polyelectrolyte nature. The aim was to improve the 'electrospinability' of alginate with addition of exceptionally high molecular weight poly(ethylene oxide) (PEO) as a co-polymer. The compositions of the polymer-blend solutions for electrospinning were varied for PEO molecular weight, total (alginate plus PEO) polymer concentration, and PEO proportion in the dry alginate-PEO polymer mix used. These were tested for rheology (viscosity, complex viscosity, storage and loss moduli) and conductivity, and the electrospun nanofibers were characterized by scanning electron microscopy. One-parameter-at-a-time approach and response surface methodology (RSM) were used to optimize the polymer-blend solution composition to obtain defined nanofibers. Both approaches revealed that the major influence on nanofiber formation and diameter were total polymer concentration and PEO proportion. These polymer-blend solutions of appropriate conductivity and viscosity enabled fine-tuning of nanofiber diameter. PEO molecular weight of 2-4 million Da greatly improved the electrospinnability of alginate, producing nanofibers with >85% alginate. This study shows that RSM can be used to design nanofibers with optimal alginate and co-polymer contents to provide efficient scaffold material for regenerative medicine.

4.
Eur J Pharm Sci ; 121: 178-187, 2018 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-29803688

RESUMO

The delivery of probiotics to different sites of action within the human body might help to prevent and treat several diseases. Here, we describe a microcapsule-based system for delivery of probiotic bacteria, as vegetative cells or spores, which promotes their prolonged survival and efficient revival, and successful colonisation of the target surface. This system is proposed for local delivery into periodontal pockets. Encapsulation of the probiotic bacteria was based on alginate crosslinking with calcium ions. This was performed by prilling the polymer dispersion supplemented with the probiotic using membrane vibration technology, followed by chitosan coating by polyelectrolyte complexation. The microcapsules were 120-150 µm in diameter, and were dried by lyophilisation. The chitosan coating increased the specific surface area and improved the bioadhesion potential, with no negative impact on viability and growth kinetics of the probiotic bacteria. Chitosan represents a barrier, which promotes sustained release of the probiotic bacteria. Vegetative bacteria were encapsulated at 2 × 108 CFU/g dry microcapsules, which represented ~5% of the prepared microcapsules, with stable viability for at least 2 months. Encapsulation of bacterial spores was greater, at 2 × 1010 CFU/g dry microcapsules, achieving 100% of microcapsules with incorporated revivable spores.


Assuntos
Bacillus/fisiologia , Probióticos/administração & dosagem , Alginatos/administração & dosagem , Alginatos/química , Cápsulas , Quitosana/administração & dosagem , Quitosana/química , Composição de Medicamentos , Escherichia coli/crescimento & desenvolvimento , Excipientes/administração & dosagem , Excipientes/química , Liofilização , Probióticos/química
5.
Carbohydr Polym ; 181: 93-102, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29254056

RESUMO

Complexation of linear alginate polyanions with different classes of crosslinkers (divalent cations, polycations, positively charged surfactants) was investigated, to unravel their effects on nanoparticle formation. The goal was to define the crosslinker-to-alginate molar ratios at which nanoparticles are formed, and to reveal the underlying thermodynamics and molecular interactions using dynamic and electrophoretic light scattering, isothermal titration calorimetry, and infrared spectroscopy. Alginate nanoparticles were formed across a limited range of molar ratios that was specific for each crosslinker, and had different size and stability. Thermodynamic parameters of alginate complexation with crosslinkers showed that nanoparticle formation was in all cases entropy driven, together with a minor enthalpic contribution. The crosslinking mechanism was based on ionic interactions, with accompanying weaker interactions specific for each crosslinker, and involved characteristic macroscopic association constants (Ka1) for complexation of alginate (range, 104-109M-1). Additionally, the ionic strengths of the media influenced the characteristics and stabilities of the polyelectrolyte nanoparticles.

6.
Int J Pharm ; 524(1-2): 65-76, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28359820

RESUMO

The focus was on the development of medicated foam for incorporation of two incompatible active agents for psoriasis treatment; i.e., lipophilic cholecalciferol, and hydrophilic salicylic acid. Emphasis was given to formulation of a propellant-free foam, with sufficient foaming properties, physical and chemical stability, and low irritancy potential to maintain relevance for later translation into clinical practice. Various excipients and concentrations were examined to achieve suitable foam stability parameters, viscoelasticity, and bubble-size, which relate to foamability and spreadability. The major positive impact on these properties was through a combination of surfactants, and by inclusion of a viscosity-modifying polymer. Incorporation of the incompatible drugs was then examined, noting the instability of cholecalciferol in an acidic environment, with the design aim to separate the drug distributions among the different foam phases. Cholecalciferol was stabilized in the emulsion-based foam, with at least a 30-fold lower degradation rate constant compared to its aqueous solution. The composition of the emulsion-based foam itself protected cholecalciferol from degradation, as well as the addition of the radical-scavenging antioxidant tocopheryl acetate to the oil phase. With the patient in mind, the irritancy potential was also examined, which was below the set limit that defines a non-irritant dermal product.


Assuntos
Emulsões/química , Excipientes/química , Psoríase/tratamento farmacológico , Tensoativos/química , Substâncias Viscoelásticas , Colecalciferol/administração & dosagem , Humanos
7.
Ther Deliv ; 7(12): 795-808, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27834615

RESUMO

AIM: Delivery of the natural anti-inflammatory compound resveratrol with nanoemulsions can dramatically improve its tissue targeting, bioavailability and efficacy. Current assessment of resveratrol delivery efficacy is limited to indirect pharmacological measures. Molecular imaging solves this problem. Results/methodology: Nanoemulsions containing two complementary imaging agents, near-infrared dye and perfluoropolyether (PFPE), were developed and evaluated. Nanoemulsion effects on macrophage uptake, toxicity and NO production were also evaluated. The presence of PFPE did not affect nanoemulsion size, zeta potential, colloidal stability, drug loading or drug release. CONCLUSION: PFPE nanoemulsions can be used in future studies to evaluate nanoemulsion biodistribution without interfering with resveratrol delivery and pharmacological outcomes. Developed nanoemulsions show promise as a versatile treatment strategy for cancer and other inflammatory diseases. [Formula: see text].


Assuntos
Imagem Molecular , Estilbenos , Disponibilidade Biológica , Emulsões , Resveratrol , Distribuição Tecidual
8.
Int J Pharm ; 511(2): 774-84, 2016 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-27475834

RESUMO

In this study the development of stable polyelectrolyte-surfactant complex nanoparticles composed of alginate and cetylpyridinium chloride (CPC), with and without ZnCl2, for therapeutic use, is investigated. The mechanism of CPC binding by alginate was analyzed using a cetylpyridinium cation (CP(+)) selective membrane electrode. The cooperative nature of the interaction between CP(+) and alginate was underlined by the sigmoidal shape of the binding isotherms. The presence of salts was shown to weaken interactions and, moreover, ZnCl2 reduced the cooperativity of binding. The CP(+) cations in the form of micellar associates acted as multivalent crosslinkers of the alginate chains where stable dispersions of CP-alginate nanoparticles were formed in water at CP(+)/alginate charge ratios from 0.2 to 0.8. Characterization of the nanoparticles showed hydrodynamic diameters from 140 to 200nm, a polydispersity index below 0.2, a negative zeta potential and spherical morphology. The entrapment efficiency of CPC was ∼94%, the loading capacity more than 50% and prolonged release over 7days were shown. The formulations with noted charge ratios resulted in stable CP-alginate nanoparticles with a potential of treating periodontal disease.


Assuntos
Alginatos/química , Cetilpiridínio/farmacocinética , Nanopartículas/química , Cetilpiridínio/química , Cloretos/química , Liberação Controlada de Fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Micelas , Tamanho da Partícula , Compostos de Zinco/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...