Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Theor Biol ; 572: 111591, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37543300

RESUMO

Synchronization of interconnecting units is one of the hottest topics many researchers are interested in. In addition, this emerging phenomenon is responsible for many biological processes, and thus, the synchronization of interacting neurons is an important field of study in neuroscience. Employing the memristive Chialvo (mChialvo) neuron map, this paper investigates the effect of electrical, inner-linking, chemical, and hybrid coupling functions on the synchronization state of a neuronal network with regular structure. Master stability function (MSF) analysis is performed to obtain the necessary conditions for synchronizing the built networks. Afterward, the MSF-based results are confirmed by calculating the synchronization error. Besides, the dynamics of the synchronous neurons are discussed based on the bifurcation analysis. Our results suggest that, compared to the electrical and inner-linking functions, chemical synapses facilitate mChialvo neurons' synchronization since the neurons can achieve synchrony with a negligible chemical coupling strength. Further studies reveal that based on the active synapses, coupled mChialvo neurons can reach cluster synchronization, chimera state, sine-like synchronization, phase synchronization, and cluster phase synchronization.

2.
Phys Rev E ; 107(1-1): 014201, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36797861

RESUMO

A long-standing expectation is that two repulsively coupled oscillators tend to oscillate in opposite directions. It has been difficult to achieve complete synchrony in coupled identical oscillators with purely repulsive coupling. Here, we introduce a general coupling condition based on the linear matrix of dynamical systems for the emergence of the complete synchronization in pure repulsively coupled oscillators. The proposed coupling profiles (coupling matrices) define a bidirectional cross-coupling link that plays the role of indicator for the onset of complete synchrony between identical oscillators. We illustrate the proposed coupling scheme on several paradigmatic two-coupled chaotic oscillators and validate its effectiveness through the linear stability analysis of the synchronous solution based on the master stability function approach. We further demonstrate that the proposed general condition for the selection of coupling profiles to achieve synchronization even works perfectly for a large ensemble of oscillators.

3.
Chaos ; 32(12): 123133, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36587357

RESUMO

In neuronal network analysis on, for example, synchronization, it has been observed that the influence of interactions between pairwise nodes is essential. This paper further reveals that there exist higher-order interactions among multi-node simplicial complexes. Using a neuronal network of Rulkov maps, the impact of such higher-order interactions on network synchronization is simulated and analyzed. The results show that multi-node interactions can considerably enhance the Rulkov network synchronization, better than pairwise interactions, for involving more and more neurons in the network.


Assuntos
Modelos Neurológicos , Neurônios , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...