Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(3)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36768745

RESUMO

Senescent cells exhibit several typical features, including the senescence-associated secretory phenotype (SASP), promoting the secretion of various inflammatory proteins and small extracellular vesicles (EVs). SASP factors cause chronic inflammation, leading to age-related diseases. Recently, therapeutic strategies targeting senescent cells, known as senolytics, have gained attention; however, noninvasive methods to detect senescent cells in living organisms have not been established. Therefore, the goal of this study was to identify novel senescent markers using small EVs (sEVs). sEVs were isolated from young and senescent fibroblasts using three different methods, including size-exclusion chromatography, affinity column for phosphatidylserine, and immunoprecipitation using antibodies against tetraspanin proteins, followed by mass spectrometry. Principal component analysis revealed that the protein composition of sEVs released from senescent cells was significantly different from that of young cells. Importantly, we identified ATP6V0D1 and RTN4 as novel markers that are frequently upregulated in sEVs from senescent and progeria cells derived from patients with Werner syndrome. Furthermore, these two proteins were significantly enriched in sEVs from the serum of aged mice. This study supports the potential use of senescent markers from sEVs to detect the presence of senescent cells in vivo.


Assuntos
Senescência Celular , Vesículas Extracelulares , Animais , Camundongos , Vesículas Extracelulares/metabolismo , Fibroblastos/metabolismo
2.
Cancer Treat Res Commun ; 27: 100364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33812182

RESUMO

BACKGROUND: Ovarian cancer is the most lethal gynecologic malignancy due to the tumor's acquisition of chemoresistance to platinum-based chemotherapy. To solve this problem, we conducted RNAi-based large-scale screening and determined that tyrosine kinase with immunoglobulin-like and EGF-like domains 1 (TIE-1) is a key molecule involved in the platinum resistance of ovarian cancer cells. Recently, a variety of studies have investigated that small extracellular vesicles (sEVs) contribute to the communication between cancer cells, including the development of chemoresistance in ovarian cancer. The purpose of our study is to determine if sEVs-derived TIE-1 is involved in the chemoresistance of ovarian cancer cells. MATERIALS AND METHODS: TIE-1-overexpressed TOV112D cells, termed TOV112DTIE-1 cells, were established, and sEVs were isolated from TOV112DTIE-1 cells supernatants by ultracentrifugation. We assessed cisplatin sensitivity in recipient cells with TOV112DTIE-1-derived sEVs by cell-Titer Glo kit. We also asked whether sEV-derived TIE-1 suppressed the DNA damage response in recipient cells and evaluated the DNA damage response by counting cells positive for DNA damage foci. RESULTS: TIE-1 was contained within sEVTIE-1 derived from the cellular supernatant of TOV112DTIE-1. We showed that sEV-derived TIE-1 decreased chemosensitivity to cisplatin by suppressing the DNA damage response in recipient cells. CONCLUSION: Our findings suggest that sEV-derived TIE-1 could be a new therapeutic target for refractory ovarian cancer.


Assuntos
Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Vesículas Extracelulares/genética , Neoplasias Ovarianas/genética , Receptor de TIE-1/genética , Antineoplásicos/farmacologia , Comunicação Celular , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Reparo do DNA/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Feminino , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Receptor de TIE-1/metabolismo , Transfecção
3.
Geriatr Gerontol Int ; 20(6): 539-546, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32358923

RESUMO

The increase of the morbidity rate in age-related diseases, such as cancer, Alzheimer's disease, arteriosclerosis and pulmonary fibrosis, has become a profound social problem. Recent reports have pointed out that senescent cells accumulated in the body with aging might cause these aged-related pathologies. Cellular senescence is known as an irreversible cell cycle arrest induced by various stresses, and can function as an important tumor suppression mechanism to exclude the premalignant cells. In contrast, senescent cells provoke the phenomenon, termed the senescence-associated secretory phenotype, which causes the secretion of various inflammatory proteins, and it is at risk of facilitating chronic inflammation and oncogenic transformation to surrounding cells. We have previously reported that senescent cells secrete not only inflammatory proteins, but also extracellular vesicles (EV). EV include various cellular components, such as proteins, lipids and nucleic acids, which are proven to be important factors for cell-to-cell communication. Recent evidence suggests that EV secreted from senescent cells might contribute to tumorigenesis and age-associated pathologies as new senescence-associated secretory phenotype factors. In addition, we also showed that the EV secretion pathway is one of the essential defense mechanisms to maintain cellular homeostasis by excretion of intercellular toxic substances into extracellular space. Herein, this review shows the biological functions of EV secreted from senescent cells. Geriatr Gerontol Int 2020; ••: ••-••.


Assuntos
Senescência Celular , Vesículas Extracelulares/metabolismo , Envelhecimento/fisiologia , Transformação Celular Neoplásica/metabolismo , Exossomos/metabolismo , Humanos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...