Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cureus ; 16(5): e59578, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38832157

RESUMO

Introduction Muscles, ligaments, tendons, bones, and cartilage undergo age-related changes, affecting the foot-ankle joint complex biomechanics in both genders. While international studies have extensively researched these dynamics, Indian studies are limited. Our study aims to fill this gap by analyzing the anthropometric and biomechanical function of the foot-ankle joint complex in normal individuals and those with painful pathologies at All India Institute of Medical Sciences (AIIMS) Rajkot's OPD. Methods In a two-year case-control study of the cross-sectional type conducted at AIIMS Rajkot's OPD, 158 patients with similar pain intensity on the Numeric Pain Rating Scale were examined. Anthropometric and biomechanical measurements were taken for both affected and non-affected foot and ankle joints. Cases comprised patients with foot and ankle joint pain, while controls were selected based on predefined criteria and were without such pain. Ethical approval was acquired from the Institutional Ethical Committee of AIIMS Rajkot. Results The sprain of the ankle joint and foot was the most common musculoskeletal pathology (65 out of 158 cases, i.e., 41.13%) affecting the ankle joint-foot complex. Patients involved in occupations requiring higher physical inactivity suffer more commonly from ankle joint-foot pathologies. The mean difference in the range of motion, i.e., dorsiflexion, plantar flexion, inversion, and eversion, between affected and non-affected feet was found to be lower in the patients who belonged to occupations involving low physical activity compared to those patients having occupations with high physical activity. Conclusion Reduced physical activity increases the stiffness and reduces the flexibility of the tendons, muscles, and ligaments of any joint (the ankle joint-foot complex in this study) and is associated with a higher incidence of musculoskeletal pathologies.

2.
RSC Adv ; 14(10): 6762-6775, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38405071

RESUMO

In this study, we employed density functional theory coupled with the full-potential linearized augmented plane-wave method (FP-LAPW) to investigate the structural, electronic, and magnetic properties of the Ti2FeAs alloy adopting the Hg2CuTi-type structure. Our findings demonstrate that all the examined structures exhibit ferromagnetic (FM) behaviour. By conducting electronic band structure calculations, we observed an energy gap of 0.739 eV for Ti2FeAs in the spin-down state and metallic intersections at the Fermi level in the spin-up state. These results suggest the half-metallic (HM) nature of Ti2FeAs, where the Ti-d and Fe-d electronic states play a significant role near the Fermi level. Additionally, the obtained total magnetic moments are consistent with the Slater-Pauling rule (Mtot = Ztot - 18), indicating 100% spin polarization for these compounds. To explore their optical properties, we employed the dielectric function to compute various optical parameters, including absorption spectra, energy-loss spectra, refractive index, reflectivity, and conductivity. Furthermore, various thermodynamic parameters were evaluated at different temperatures and pressures. The results obtained from the elastic parameters reveal the anisotropic and ductile nature of the Ti2FeAs compound. These findings suggest that Ti2FeAs has potential applications in temperature-tolerant devices and optoelectronic devices as a UV absorber.

3.
J Public Health Afr ; 14(10): 2696, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38020268

RESUMO

Antero-lateral ligament complex (ALC) is a vital structure for maintaining rotational stability of the knee. Evaluation of ALC radiologically (MRI) is still unpopular in setting of anterior cruciate ligament injury. A dire necessity exists for the orthopedic surgeons in outdoor patient department settings to rule out involvement of ALC. So, that it can be addressed during operating for Anterior Cruciate Ligament injury. The authors have formulated an algorithm on a personal level and have implemented this screening program and initiated screening of young to middle aged patients reporting with rotational knee instability for ALC involvement before recommending final operative plan. This screening program which uses specifically devised physical tests have significantly reduced the number of underdiagnosed Antero Lateral Ligament tear.

4.
J Org Chem ; 88(22): 15580-15588, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37933871

RESUMO

Benzofuran and naphthofuran derivatives are synthesized from readily available phenols and naphthols. Regioselective ring openings of 2H-azirine followed by in situ aromatization using a catalytic amount of Brønsted acid have established the novelty of the methodology. The involvement of a series of 2H-azirines with a variety of phenols, 1-naphthols, and 2-naphthols showed the generality of the protocol. In-depth density functional theory calculations revealed the reaction mechanism with the energies of the intermediates and transition states of a model reaction. An alternate pathway of the mechanism has also been proposed with computer modeling.

5.
J Mol Graph Model ; 125: 108618, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37678041

RESUMO

In this study, a detailed computational spectroscopic investigation of sabizabulin, a small molecule known as a tubulin inhibitor with potential antineoplastic, antiviral, and anti-inflammatory activities, has been presented. Our work utilizes Density Functional Theory (DFT) calculations to explore molecular optimization, thermodynamic characteristics, and the analysis of normal modes with vibrational assignments. We calculate essential properties such as standard zero-point vibrational energy, entropy, dipole moment, etc., based on data extracted from the optimized molecular structure. Additionally, we examine Mulliken charges and the Molecular Electrostatic Potential (MEP) plot to comprehend the electronic distribution and chemical activity of sabizabulin. Our findings provide valuable insights into the spectroscopic properties of sabizabulin, highlighting its potential therapeutic applications. Our work aims to explore future research directions that could expand the understanding of sabizabulin's actions and enhance its applicability in medical treatments.


Assuntos
Imidazóis , Indóis , Estrutura Molecular , Antivirais
6.
J Mol Model ; 29(9): 299, 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37646844

RESUMO

CONTEXT: It is known that methylating agents methylate DNA by transferring a methyl cation (CH3+) to the nucleophilic sites in DNA bases and DNA methylation is implicated in cancer and other pathological conditions. Therefore, it is important to scavenge CH3+ ion in order to protect DNA from methylation. Graphene is considered to be a versatile material for use in a wide variety of fields including sensors, antioxidants, drug delivery and DNA sequencing. In this work, we have theoretically investigated the interaction of CH3+ ions with graphene surface with an aim to understand if pristine graphene can be used as a substrate to adsorb CH3+ cations generated from harmful methylating agents. The computed adsorption energies show that adsorption of one, two and three CH3+ ions on graphene is favourable as the adducts thus formed are found to be substantially stable in both gas phase and aqueous media. The Bader charge transfer analysis and density of states (DOS) calculation also indicate a strong interaction between graphene and CH3+ ions. Thus, our results show that pristine graphene can be used as a substrate to scavenge CH3+ ions. METHODS: The spin polarised density functional theory (DFT) calculations employing PBE functional, ultrasoft pseudopotentials and plane wave basis set having kinetic energy cut-offs of 40 Ry and 400 Ry, respectively, for wave functions and charge densities were carried out to study the adsorption of CH3+ ion(s) on the pristine graphene surface. The Grimme's DFT-D2 method was used for the estimation of van der Waals interactions. The 'dipole correction' along z-direction was also applied for adsorption study. The Marzari-Vanderbilt smearing and Monkhorst-Pack k-point grid were employed for the Brillouin zone sampling. A 6 × 6 graphene supercell with a vertical cell dimension of 18 Å was considered for the adsorption study. The charge transfer between the CH3+ ion(s) and graphene was estimated using Bader charge analysis. The implicit solvation model (SCCS) was used to estimate the solvent effect of aqueous media. All the calculations were performed using QUANTUM ESPRESSO package.

8.
Org Lett ; 25(17): 3034-3039, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37092788

RESUMO

A catalyst-controlled divergent synthesis of bridged [3.3.1] bis(indolyl)-oxanes and cis-[6.7] fused bis(indolyl) oxepanes via diastereoselective desymmetrization of bis(indolyl)-cyclohexadienones is presented for the first time. The reaction is highly atom- and step-economic, furnishing sp3-rich functionalized bis(indolyl) derivatives in good to excellent yields with wide substrate scope. The reaction proceeds through Friedel-Crafts alkylation followed by catalyst-controlled selective C-C bond formation/rearrangement. Gram scale synthesis and synthetic utility to generate bis(indolyl) alkaloid-like molecular diversity were also illustrated.

9.
Org Biomol Chem ; 21(4): 838-845, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36602157

RESUMO

An efficient dual Pd-catalytic system was developed for one-pot synthesis of 3-sulfenylindoles via C-C, C-N and C-S bond construction directly from unactivated 2-iodo(NH)anilines under mild reaction conditions. Furthermore, 3-selenyl/halo/carbon-functionalized indoles were synthesized in good yields and a short reaction time. The synthetic utility of 3-sulfenylindole was also demonstrated. The key role of solvent in palladium catalysis was unravelled by DFT.

10.
J Biomol Struct Dyn ; 41(16): 7595-7602, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36124814

RESUMO

There is an urgent requirement for drug discovery and more importantly drug repositioning due to infectious new Severe Acute Respiratory Syndrome coronavirus 2. As per the recent report published in the journal L'Encéphale in May 2020, there is a planned ReCoVery Study examining the repurposing the chlorpromazine for the treatment of COVID-19. Here, we apply a combined Raman microspectroscopy and DFT-MD approach to investigate the structural dynamics of the Chlorpromazine (CPZ) drug with dipalmitoylphosphatidylcholine (DPPC) lipid bilayer, identifying the specific position of the drug in the DPPC lipid bilayer. The intensity ratios of the Raman peaks I2935/I2880, I1097/I1064 and I1097/I1129 are representative of the interaction of drugs with lipid alkyl chains and furnish conformation of lipid alkyl chains. Raman imaging microscopy for the study of the distribution of CPZ inside the lipid vesicles is reported. We also investigated the influence of order and disorder ratio in the CPZ on the DPPC liposomes prepared on phase transition temperature. HIGHLIGHTSDrug-membrane interactions using micromolar concentrations of both lipid and drugs.Neuroleptic drug and DPPC vesicles composed of DPPC/drug mixtures reveal qualitative differences between the Raman spectraThe temperature-controlled Raman microspectroscopic study has demonstrated that below phase-transition temperature, the fatty acid chains of the phospholipids are stiff and packed in a highly ordered array.DFT and MD simulations to understand molecular interactions, structural dynamics, and Raman spectra.Above phase-transition temperature, the chains are disordered and possess more motional freedom. Communicated by Ramaswamy H. Sarma.

11.
ACS Appl Mater Interfaces ; 14(36): 41196-41207, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36044354

RESUMO

Fast detection of hydrogen gas leakage or its release in different environments, especially in large electric vehicle batteries, is a major challenge for sensing applications. In this study, the morphological, structural, chemical, optical, and electronic characterizations of ZnO:Eu nanowire arrays are reported and discussed in detail. In particular, the influence of different Eu concentrations during electrochemical deposition was investigated together with the sensing properties and mechanism. Surprisingly, by using only 10 µM Eu ions during deposition, the value of the gas response increased by a factor of nearly 130 compared to an undoped ZnO nanowire and we found an H2 gas response of ∼7860 for a single ZnO:Eu nanowire device. Further, the synthesized nanowire sensors were tested with ultraviolet (UV) light and a range of test gases, showing a UV responsiveness of ∼12.8 and a good selectivity to 100 ppm H2 gas. A dual-mode nanosensor is shown to detect UV/H2 gas simultaneously for selective detection of H2 during UV irradiation and its effect on the sensing mechanism. The nanowire sensing approach here demonstrates the feasibility of using such small devices to detect hydrogen leaks in harsh, small-scale environments, for example, stacked battery packs in mobile applications. In addition, the results obtained are supported through density functional theory-based simulations, which highlight the importance of rare earth nanoparticles on the oxide surface for improved sensitivity and selectivity of gas sensors, even at room temperature, thereby allowing, for instance, lower power consumption and denser deployment.

12.
Anim Reprod Sci ; 246: 107052, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35987804

RESUMO

To participate in sperm-oocyte fusion, spermatozoa need to be motile. In the testes, spermatozoa are immotile, although these gametes acquire the capacity for motility during the transit through the epididymis. During the period of epididymal transport from the male genital tract to the female genital tract, spermatozoa exhibit various types of motility that are regulated by complex signalling and communication mechanisms. Because motility is very dynamic, it can be affected by small changes in the external or internal environment of spermatozoa within a very short time. This indicates that regulatory membrane proteins, known as sperm ion channels, are involved in the regulation of sperm motility. Research results from studies, where there was use of electrophysiological, pharmacological, molecular and knock-out approaches, indicate ion channels are possibly involved in the regulation of sperm membrane polarisation, intracellular pH, motility, energy homeostasis, membrane integrity, capacitation, hyperactivity, acrosome reaction and fertilisation processes. In this review, there is summarisation of the key functions that ion channels have in the regulation, initiation, maintenance, and modulation of sperm motility. In addition, in this review there is highlighting of novel insights about the pathways of ion channels that are activated in spermatozoa while these gametes are located in the oviduct leading to the fertilisation capacity of these cells.


Assuntos
Capacitação Espermática , Motilidade dos Espermatozoides , Masculino , Feminino , Animais , Motilidade dos Espermatozoides/fisiologia , Capacitação Espermática/fisiologia , Sêmen , Reação Acrossômica/fisiologia , Espermatozoides/fisiologia , Canais Iônicos/genética , Canais Iônicos/metabolismo
13.
ACS Appl Mater Interfaces ; 14(25): 29331-29344, 2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35704838

RESUMO

Monitoring volatile organic compounds (VOCs) in harsh environments, especially for safety applications, is a growing field that requires specialized sensor structures. In this work, we demonstrate the sensing properties toward the most common VOCs of columnar Al2O3/ZnO heterolayer-based sensors. We have also developed an approach to tune the sensor selectivity by changing the thickness of the exposed amorphous Al2O3 layer from 5 to 18 nm. Columnar ZnO films are prepared by a chemical solution method, where the exposed surface is decorated with an Al2O3 nanolayer via thermal atomic layer deposition at 75 °C. We have investigated the structure and morphology as well as the vibrational, chemical, electronic, and sensor properties of the Al2O3/ZnO heterostructures. Transmission electron microscopy (TEM) studies show that the upper layers consist of amorphous Al2O3 films. The heterostructures showed selectivity to 2-propanol vapors only within the range of 12-15 nm thicknesses of Al2O3, with the highest response value of ∼2000% reported for a thickness of 15 nm at the optimal working temperature of 350 °C. Density functional theory (DFT) calculations of the Al2O3/ZnO(1010) interface and its interaction with 2-propanol (2-C3H7OH), n-butanol (n-C4H9OH), ethanol (C2H5OH), acetone (CH3COCH3), hydrogen (H2), and ammonia (NH3) show that the molecular affinity for the Al2O3/ZnO(1010) interface decreases from 2-propanol (2-C3H7OH) ≈ n-butanol (n-C4H9OH) > ethanol (C2H5OH) > acetone (CH3COCH3) > hydrogen (H2), which is consistent with our gas response experiments for the VOCs. Charge transfers between the surface and the adsorbates, and local densities of states of the interacting atoms, support the calculated strength of the molecular preferences. Our findings are highly important for the development of 2-propanol sensors and to our understanding of the effect of the heterojunction and the thickness of the top nanolayer on the gas response, which thus far have not been reported in the literature.

14.
Neurochem Res ; 47(2): 234-248, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34637100

RESUMO

Parkinson's disease (PD) is associated with dopamine depletion in the striatum owing to the selective and progressive loss of the nigrostriatal dopaminergic neurons, which results in motor dysfunction and secondary clinical manifestations. The dopamine level in the striatum is preserved because of the innervation of the substantia nigra (SN) dopaminergic neurons into it. Therefore, protection of the SN neurons is crucial for maintaining the dopamine level in the striatum and for ensuring the desired motor coordination. Several strategies have been devised to protect the degenerating dopaminergic neurons or to restore the dopamine levels for treating PD. Most of the methods focus exclusively on preventing cell body death in the neurons. Although advances have been made in understanding the disease, the search for disease-modifying drugs is an ongoing process. The present review describes the evidence from studies involving patients with PD as well as PD models that axon terminals are highly vulnerable to exogenous and endogenous insults and degenerate at the early stage of the disease. Impairment of mitochondrial dynamics, Ca2+ homeostasis, axonal transport, and loss of plasticity of axon terminals appear before the neuronal degeneration in PD. Furthermore, distortion of synaptic morphology and reduction of postsynaptic dendritic spines are the neuropathological hallmarks of early-stage disease. Thus, the review proposes a shift in focus from discerning the mechanism of neuronal cell body loss and targeting it to an entirely different approach of preventing axonal degeneration. The review also suggests appropriate strategies to prevent the loss of synaptic terminals, which could induce regrowth of the axon and its auxiliary fibers and might offer relief from the symptomatic features of PD.


Assuntos
Dopamina , Doença de Parkinson , Axônios/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Humanos , Doença de Parkinson/metabolismo , Substância Negra/metabolismo
15.
PLoS Genet ; 17(7): e1009460, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34314427

RESUMO

Visual perception of the environment is mediated by specialized photoreceptor (PR) neurons of the eye. Each PR expresses photosensitive opsins, which are activated by a particular wavelength of light. In most insects, the visual system comprises a pair of compound eyes that are mainly associated with motion, color or polarized light detection, and a triplet of ocelli that are thought to be critical during flight to detect horizon and movements. It is widely believed that the evolutionary diversification of compound eye and ocelli in insects occurred from an ancestral visual organ around 500 million years ago. Concurrently, opsin genes were also duplicated to provide distinct spectral sensitivities to different PRs of compound eye and ocelli. In the fruit fly Drosophila melanogaster, Rhodopsin1 (Rh1) and Rh2 are closely related opsins that originated from the duplication of a single ancestral gene. However, in the visual organs, Rh2 is uniquely expressed in ocelli whereas Rh1 is uniquely expressed in outer PRs of the compound eye. It is currently unknown how this differential expression of Rh1 and Rh2 in the two visual organs is controlled to provide unique spectral sensitivities to ocelli and compound eyes. Here, we show that Homothorax (Hth) is expressed in ocelli and confers proper rhodopsin expression. We find that Hth controls a binary Rhodopsin switch in ocelli to promote Rh2 expression and repress Rh1 expression. Genetic and molecular analysis of rh1 and rh2 supports that Hth acts through their promoters to regulate Rhodopsin expression in the ocelli. Finally, we also show that when ectopically expressed in the retina, hth is sufficient to induce Rh2 expression only at the outer PRs in a cell autonomous manner. We therefore propose that the diversification of rhodpsins in the ocelli and retinal outer PRs occurred by duplication of an ancestral gene, which is under the control of Homothorax.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/metabolismo , Proteínas de Homeodomínio/genética , Fenômenos Fisiológicos Oculares/genética , Rodopsina/genética , Animais , Animais Geneticamente Modificados , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Proteínas de Membrana/genética , Células Fotorreceptoras/metabolismo , Regiões Promotoras Genéticas , Retina/fisiologia
16.
ACS Appl Mater Interfaces ; 13(8): 10537-10552, 2021 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-33600155

RESUMO

A comparative investigation of the post-electroplating treatment influence on the gas detecting performances of single ZnO nanorod/nanowire (NR/NW), as grown by electrochemical deposition (ECD) and integrated into nanosensor devices, is presented. In this work, hydrothermal treatment (HT) in a H2O steam and conventional thermal annealing (CTA) in a furnace at 150 °C in ambient were used as post-growth treatments to improve the material properties. Herein, the morphological, optical, chemical, structural, vibrational, and gas sensing performances of the as-electrodeposited and treated specimens are investigated and presented in detail. By varying the growth temperature and type of post-growth treatment, the morphology is maintained, whereas the optical and structural properties show increased sample crystallization. It is shown that HT in H2O vapors affects the optical and vibrational properties of the material. After investigation of nanodevices based on single ZnO NR/NWs, it was observed that higher temperature during the synthesis results in a higher gas response to H2 gas within the investigated operating temperature range from 25 to 150 °C. CTA and HT or autoclave treatment showed the capability of a further increase in gas response of the prepared sensors by a factor of ∼8. Density functional theory calculations reveal structural and electronic band changes in ZnO surfaces as a result of strong interaction with H2 gas molecules. Our results demonstrate that high-performance devices can be obtained with high-crystallinity NWs/NRs after HT. The obtained devices could be the key element for flexible nanoelectronics and wearable electronics and have attracted great interest due to their unique specifications.

17.
ACS Appl Mater Interfaces ; 12(37): 42248-42263, 2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32813500

RESUMO

In this study, a strategy to prepare CuO/Cu2O/Cu microwires that are fully covered by a nanowire (NW) network using a simple thermal-oxidation process is developed. The CuO/Cu2O/Cu microwires are fixed on Au/Cr pads with Cu microparticles. After thermal annealing at 425 °C, these CuO/Cu2O/Cu microwires are used as room-temperature 2-propanol sensors. These sensors show different dominating gas responses with operating temperatures, e.g., higher sensitivity to ethanol at 175 °C, higher sensitivity to 2-propanol at room temperature and 225 °C, and higher sensitivity to hydrogen gas at ∼300 °C. In this context, we propose the sensing mechanism of this three-in-one sensor based on CuO/Cu2O/Cu. X-ray diffraction (XRD) studies reveal that the annealing time during oxidation affects the chemical appearance of the sensor, while the intensity of reflections proves that for samples oxidized at 425 °C for 1 h the dominating phase is Cu2O, whereas upon further increasing the annealing duration up to 5 h, the CuO phase becomes dominant. The crystal structures of the Cu2O-shell/Cu-core and the CuO NW networks on the surface were confirmed with a transmission electron microscope (TEM), high-resolution TEM (HRTEM), and selected area electron diffraction (SAED), where (HR)TEM micrographs reveal the monoclinic CuO phase. Density functional theory (DFT) calculations bring valuable inputs to the interactions of the different gas molecules with the most stable top surface of CuO, revealing strong binding, electronic band-gap changes, and charge transfer due to the gas molecule interactions with the top surface. This research shows the importance of the nonplanar CuO/Cu2O layered heterostructure as a bright nanomaterial for the detection of various gases, controlled by the working temperature, and the insight presented here will be of significant value in the fabrication of new p-type sensing devices through simple nanotechnology.

18.
ACS Appl Mater Interfaces ; 12(22): 24951-24964, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32367706

RESUMO

Reducing the operating temperature to room temperature is a serious obstacle on long-life sensitivity with long-term stability performances of gas sensors based on semiconducting oxides, and this should be overcome by new nanotechnological approaches. In this work, we report the structural, morphological, chemical, optical, and gas detection characteristics of Eu-doped ZnO (ZnO:Eu) columnar films as a function of Eu content. The scanning electron microscopy (SEM) investigations showed that columnar films, grown via synthesis from a chemical solutions (SCS) approach, are composed of densely packed columnar type grains. The sample sets with contents of ∼0.05, 0.1, 0.15, and 0.2 at% Eu in ZnO:Eu columnar films were studied. Surface functionalization was achieved using PdCl2 aqueous solution with additional thermal annealing in air at 650 °C. The temperature-dependent gas-detection characteristics of Pd-functionalized ZnO:Eu columnar films were measured in detail, showing a good selectivity toward H2 gas at operating OPT temperatures of 200-300 °C among several test gases and volatile organic compound vapors, such as methane, ammonia, acetone, ethanol, n-butanol, and 2-propanol. At an operating temperature OPT of 250 °C, a high gas response Igas/Iair of ∼115 for 100 ppm H2 was obtained. Experimental results indicate that Eu doping with an optimal content of about 0.05-0.1 at% along with Pd functionalization of ZnO columns leads to a reduction of the operating temperature of the H2 gas sensor. DFT-based computations provide mechanistic insights into the gas-sensing mechanism by investigating interactions between the Pd-functionalized ZnO:Eu surface and H2 gas molecules supporting the experimentally observed results. The proposed columnar materials and gas sensor structures would provide a special advantage in the fields of fundamental research, applied physics studies, and ecological and industrial applications.

19.
J Mol Neurosci ; 70(2): 276-283, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31732923

RESUMO

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) exacerbates mitochondrial impairment and α-synuclein expression leading to Parkinsonism. Impaired mitochondria and over-expressed α-synuclein are degraded and eliminated via macroautophagy and chaperone-mediated autophagy. Owing to multiple properties, silymarin protects from oxidative stress-mediated cellular injury. However, its effect on MPTP-induced changes in autophagy is not yet known. The study aimed to decipher the effect of silymarin on MPTP-induced changes in autophagy. Male mice (20-25 g) were treated with silymarin (intraperitoneally, daily, 40 mg/kg) for 2 weeks. On day 7, a few animals were also administered with MPTP (intraperitoneally, 20 mg/kg, 4 injections at 2-h interval) along with vehicles. Striatal dopamine content was determined. Western blot analysis was done to assess α-synuclein, beclin-1, sequestosome, phosphorylated 5' adenosine monophosphate-activated protein kinase (p-AMPK), lysosome-associated membrane protein-2 (LAMP-2), heat shock cognate-70 (Hsc-70), LAMP-2A, phosphorylated unc-51-like autophagy activating kinase (p-Ulk1), and phosphorylated mechanistic target of rapamycin (p-mTOR) levels in the nigrostriatal tissue. Silymarin rescued from MPTP-induced increase in beclin-1, sequestosome, p-AMPK, and p-Ulk1 and decrease in LAMP-2, p-mTOR, and LAMP-2A levels. Silymarin defended against MPTP-induced increase in α-synuclein and reduction in dopamine content. The results demonstrate that silymarin protects against MPTP-induced changes in autophagy leading to Parkinsonism.


Assuntos
Autofagia , Intoxicação por MPTP/metabolismo , Fármacos Neuroprotetores/farmacologia , Silimarina/farmacologia , Quinases Proteína-Quinases Ativadas por AMP , Animais , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Proteína Beclina-1/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Dopamina/metabolismo , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Intoxicação por MPTP/tratamento farmacológico , Masculino , Camundongos , Fármacos Neuroprotetores/uso terapêutico , Proteínas Quinases/metabolismo , Silimarina/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , alfa-Sinucleína/metabolismo
20.
ACS Omega ; 4(14): 15935-15946, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592464

RESUMO

We have used the density functional theory within the plane-wave framework to understand the reconstruction of most stable (110) chalcopyrite surfaces. Reconstructions of the polar surfaces are proposed, and three different possible nonpolar terminations for the (110) surface, namely, I, II, and III, are investigated. A detailed discussion on stabilities of all three surface terminations is carried out. It is generally observed that the (110) chalcopyrite surfaces encounter significant reconstruction in which the metal Fe and Cu cations in the first atomic layer considerably move downward to the surface, while the surface S anions migrate slightly outward toward the surface. We also investigated the adsorption of the CO2 molecule on the three terminations for the (110) surface by exploring various adsorption sites and configurations using density functional theory calculations, in which long-range dispersion interactions are taken into consideration. We show that the CO2 molecule is adsorbed and activated, while spontaneous dissociation of the CO2 molecule is also observed on the (110) surfaces. Structural change from a neutral linear molecule to a negatively charged (CO2 -δ) slightly or considerably bent species with stretched C-O bond distances are highlighted for description of the activation of the CO2 molecule. The results address the potential catalytic activity of the (110) chalcopyrite toward the reduction and conversion of CO2 to the organic molecule, which is appropriate to the production of liquid fuels.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...