Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1221684, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37719463

RESUMO

Introduction: Preeclampsia (PE) is a hypertensive disorder during pregnancy associated with elevated levels of soluble FMS-like tyrosine kinase (sFLT-1) and increased vascular sensitivity to angiotensin II (ATII). Calcitonin gene-related peptide (CALCA) is a potent vasodilator that inhibits the ATII-induced increase in blood pressure and protects against ATII-induced increases in oxidative stress through a mitochondrial-dependent pathway in male mice. In rodent pregnancy, CALCA facilitates pregnancy-induced vascular adaptation. Most of the vascular effects of CALCA are mediated by vascular smooth muscle cells (VSMCs). We recently reported that CALCA treatment inhibits sFLT-1-induced decreases in cAMP synthesis in omental artery smooth muscle cells (OASMCs) isolated from pregnant women and has relaxant effects in omental arteries (OAs) isolated from pregnant women with preeclamptic (PE) pregnancies. The current study was designed to assess the effects of sFLT-1 on mitochondrial bioenergetics in OASMCs isolated from pregnant women in the presence or absence of CALCA and assess the development of vascular dysfunction in sFLT-1 using a mouse model of PE pregnancy. Methods: OASMCs were isolated from pregnant women to assess the effects of sFLT-1 on mitochondrial bioenergetics and oxidative stress using the Seahorse assay and quantitative PCR. Pregnant mice overexpressing sFLT-1 via adenoviral delivery were used to assess the effects of CALCA infusion on the sFLT-1-induced increase in blood pressure, ATII hypersensitivity, fetal growth restriction, and the elevated albumin-creatinine ratio. Systemic blood pressure was recorded in conscious, freely moving mice using implantable radio telemetry devices. Results: CALCA inhibited the following sFLT-1-induced effects: 1) increased oxidative stress and the decreased oxygen consumption rate (OCR) in response to maximal respiration and ATP synthesis; 2) increases in the expression of mitochondrial enzyme complexes in OASMCs; 3) increased mitochondrial fragmentation in OASMCs; 4) decreased expression of mitophagy-associated PINK1 and DRAM1 mRNA expression in OASMCs; and 5) increased blood pressure, ATII hypersensitivity, fetal growth restriction, and the albumin-creatinine ratio in sFLT-1-overexpressing pregnant mice. Conclusion: CALCA inhibits sFLT-1-induced alterations in mitochondrial bioenergetics in vascular smooth muscle cells and development of maternal vascular dysfunction in a mouse model of PE.

2.
Biochim Biophys Acta Gen Subj ; 1867(11): 130452, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37652366

RESUMO

The interdependent and finely tuned balance between the well-established redox-based modification, S-nitrosylation, and its counteractive mechanism of S-nitrosothiol degradation, i.e., S-denitrosylation of biological protein or non-protein thiols defines the cellular fate in the context of redox homeostasis. S-nitrosylation of cysteine residues by S-nitrosoglutathione, S-nitroso-L-cysteine-like physiological and S-nitroso-L-cysteine ethyl ester-like synthetic NO donors inactivate Caspase-3, 8, and 9, thereby hindering their apoptotic activity. However, spontaneous restoration of their activity upon S-denitrosylation of S-nitrosocaspases into their reduced, free thiol active states, aided by the members of the ubiquitous cellular redoxin (thioredoxin/ thioredoxin reductase/ NADPH) and low molecular weight dithiol (lipoic acid/ lipoamide dehydrogenase/ dihydrolipoic acid/ NADPH) systems imply a direct relevance to their proteolytic activities and further downstream signaling cascades. Additionally, our previous and current findings offer crucial insight into the concept of redundancy between thioredoxin and lipoic acid systems, and the redox-modulated control of the apoptotic and proteolytic activity of caspases, triggering their cyto- and neurotoxic effects in response to nitro-oxidative stress. Thus, this might lay the foundation for the exogenous introduction of precise and efficient NO or related donor drug delivery systems that can directly participate in catering to the S-(de)-nitrosylation-mediated functional outcomes of the cysteinyl proteases in pathophysiological settings.


Assuntos
Óxido Nítrico , Ácido Tióctico , Humanos , Óxido Nítrico/metabolismo , Caspase 9/metabolismo , Células Hep G2 , NADP/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxina Dissulfeto Redutase
3.
Biochem Biophys Res Commun ; 653: 83-92, 2023 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-36863212

RESUMO

Proteins become S-glutathionylated as a result of the derivatization of their cysteine thiols with the thiolate anion derivative of glutathione; this process is frequently linked to diseases and protein misbehavior. Along with the other well-known oxidative modifications like S-nitrosylation, S-glutathionylation has quickly emerged as a major contributor to a number of diseases, with a focus on neurodegeneration. The immense clinical significance of S-glutathionylation in cell signaling and the genesis of diseases are progressively coming to light with advanced research, which is also creating new opportunities for prompt diagnostics that utilize this phenomenon. In-depth investigation in recent years has revealed other significant deglutathionylases in addition to glutaredoxin, necessitating the hunt for their specific substrates. The precise catalytic mechanisms of these enzymes must also be understood, along with how the intracellular environment affects their impact on protein conformation and function. These insights must then be extrapolated to the understanding of neurodegeneration and the introduction of novel and clever therapeutic approaches to clinics. Clarifying the importance of the functional overlap of glutaredoxin and other deglutathionylases and examining their complementary functions as defense systems in the face of stress are essential prerequisites for predicting and promoting cell survival under high oxidative/nitrosative stress.


Assuntos
Glutarredoxinas , Processamento de Proteína Pós-Traducional , Glutarredoxinas/metabolismo , Proteínas/metabolismo , Glutationa/metabolismo , Cisteína/metabolismo , Oxirredução , Estresse Oxidativo
4.
Front Physiol ; 14: 1116042, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875025

RESUMO

Introduction: Adrenomedullin2 (AM2) shares its receptor with Calcitonin gene related peptide and adrenomedullin with overlapping but distinct biological functions. Goal of this study was to assess the specific role of Adrenomedullin2 (AM2) in pregnancy induced vascular and metabolic adaptation using AM2 knockout mice (AM2 -/-). Method : The AM2 -/- mice were successfully generated using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/Nuclease Cas nine system. Phenotype of pregnant AM2 -/- mice was assessed with respect to its fertility, blood pressure regulation, vascular health and metabolic adaptations and compared to the wild type littermates (AM2 +/+). Results : Current data shows that AM2 -/- females are fertile with no significant difference in number of pups/litter compared to the AM2 +/+. However, ablation of AM2 decreases the gestational length and the total number of pups born dead or that die after birth is greater in AM2 -/- mice compared to AM2 +/+ mice (p < 0.05). Further AM2 -/- mice exhibit elevated blood pressure and elevated vascular sensitivity for the contractile responses to angiotensin two and higher serum sFLT-1 trigylcerides levels compared to AM2 +/+(p < 0.05). In addition, AM2 -/- mice develop glucose intolerance with elevated serum levels of Insulin during pregnancy compared to the AM2 +/+mice. Discussion: Current data suggests a physiological role for AM2 in pregnancy induced vascular and metabolic adaptations in mice.

5.
RSC Med Chem ; 14(3): 470-481, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36970150

RESUMO

A series of benzofuran-based chromenochalcones (16-35) were synthesized and evaluated for in vitro and in vivo antidiabetic activities in L-6 skeletal muscle cells and streptozotocin (STZ)-induced diabetic rat models, respectively, and further in vivo dyslipidemia activity of the compounds was evaluated in a Triton-induced hyperlipidemic hamster model. Among them, compounds 16, 18, 21, 22, 24, 31, and 35 showed significant glucose uptake stimulatory effects in skeletal muscle cells and were further evaluated for in vivo efficacy. Compounds 21, 22, and 24 showed a significant reduction in blood glucose levels in STZ-induced diabetic rats. Compounds 16, 20, 21, 24, 28, 29, 34, 35, and 36 were found active in antidyslipidemic studies. Furthermore, compound 24 effectively improved the postprandial and fasting blood glucose levels, oral glucose tolerance, serum lipid profile, serum insulin level, and the HOMA-index of db/db mice, following 15 days of successive treatment.

6.
Molecules ; 28(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36677541

RESUMO

The stem of Tinospora cordifolia has been traditionally used in traditional Indian systems of medicine for blood sugar control, without the knowledge of the underlying mechanism and chemical constitution responsible for the observed anti-diabetic effect. In the present study, Tinosporaside, a diterpenoid isolated from the stem of T. cordifolia, was investigated for its effects on glucose utilization in skeletal muscle cells, which was followed by determining the anti-hyperglycemic efficacy in our diabetic db/db mice model. We found that tinosporaside augmented glucose uptake by increasing the translocation of GLUT4 to the plasma membrane in L6 myotubes, upon prolonged exposure for 16 h. Moreover, tinosporaside treatment significantly increased the phosphorylation of protein kinase B/AKT (Ser-473) and 5' AMP-activated protein kinase (AMPK, Thr-172). These effects were abolished in the presence of the wortmannin and compound C. Administration of tinosporaside to db/db mice improved glucose tolerance and peripheral insulin sensitivity associated with increased gene expression and phosphorylation of the markers of phosphoinositide 3-kinases (PI3Ks) and AMPK signaling in skeletal muscle tissue. The findings revealed that tinosporaside exerted its antidiabetic efficacy by enhancing the rate of glucose utilization in skeletal muscle, mediated by PI3K- and AMPK-dependent signaling mechanisms.


Assuntos
Fosfatidilinositol 3-Quinases , Tinospora , Camundongos , Animais , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/metabolismo , Glucose/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fibras Musculares Esqueléticas , Fosforilação , Transportador de Glucose Tipo 4/metabolismo
7.
Artigo em Inglês | MEDLINE | ID: mdl-36568258

RESUMO

MicroRNAs (miRNAs) are discovered in science about 23 years ago. These are short, a series of non-coding, single-stranded and evolutionary conserved RNA molecules found in eukaryotic cells. It involved post-transcriptional fine-tune protein expression and repressing the target of mRNA in different biological processes. These miRNAs binds with the 3'-UTR region of specific mRNAs to phosphorylate the mRNA degradation and inhibit the translation process in various tissues. Therefore, aberrant expression in miRNAs induces numerous cardiovascular diseases and developmental defects. Subsequently, the miRNAs and Wnt singling pathway are regulating a cellular process in cardiac development and regeneration, maintain the homeostasis and associated heart diseases. In Wnt signaling pathway majority of the signaling components are expressed and regulated by miRNAs, whereas the inhibition or dysfunction of the Wnt signaling pathway induces cardiovascular diseases. Moreover, inadequate studies about the important role of miRNAs in heart development and diseases through Wnt signaling pathway has been exist still now. For this reason in present review we summarize and update the involvement of miRNAs and the role of Wnt signaling in cardiovascular diseases. We have discussed the mechanism of miRNA functions which regulates the Wnt components in cellular signaling pathway. The fundamental understanding of Wnt signaling regulation and mechanisms of miRNAs is quite essential for study of heart development and related diseases. This approach definitely enlighten the future research to provide a new strategy for formulation of novel therapeutic approaches against cardiovascular diseases.

8.
PLoS One ; 17(12): e0279041, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36520818

RESUMO

Gestational diabetes mellitus (GDM) affects 7-18% of all pregnancies. Despite its high prevalence, there is no widely accepted animal model. To address this, we recently developed a mouse model of GDM. The goal of this work was to further characterize this animal model by assessing insulin resistance and beta cell function. Mice were randomly assigned to either control (CD) or high fat, high sugar (HFHS) diet and mated 1 week later. At day 0 (day of mating) mice were fasted and intraperitoneal insulin tolerance tests (ipITT) were performed. Mice were then euthanized and pancreata were collected for histological analysis. Euglycemic hyperinsulinemic clamp experiments were performed on day 13.5 of pregnancy to assess insulin resistance. Beta cell function was assessed by glucose stimulated insulin secretion (GSIS) assay performed on day 0, 13.5 and 17.5 of pregnancy. At day 0, insulin tolerance and beta cell numbers were not different. At day 13.5, glucose infusion and disposal rates were significantly decreased (p<0.05) in Pregnant (P) HFHS animals (p<0.05) suggesting development of insulin resistance in P HFHS dams. Placental and fetal glucose uptake was significantly increased (p<0.01) in P HFHS dams at day 13.5 of pregnancy and by day 17.5 of pregnancy fetal weights were increased (p<0.05) in P HFHS dams compared to P CD dams. Basal and secreted insulin levels were increased in HFHS fed females at day 0, however at day 13.5 and 17.5 GSIS was decreased (p<0.05) in P HFHS dams. In conclusion, this animal model results in insulin resistance and beta cell dysfunction by mid-pregnancy further validating its relevance in studying the pathophysiology GDM.


Assuntos
Diabetes Gestacional , Resistência à Insulina , Insulinas , Camundongos , Feminino , Gravidez , Animais , Humanos , Açúcares , Camundongos Endogâmicos C57BL , Placenta , Dieta Hiperlipídica/efeitos adversos , Glucose , Insulina
9.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36290644

RESUMO

S-nitrosylation of proteins occurs as a consequence of the derivatization of cysteine thiols with nitric oxide (NO) and is often associated with diseases and protein malfunction. Aberrant S-nitrosylation, in addition to other genetic and epigenetic factors, has gained rapid importance as a prime cause of various metabolic, respiratory, and cardiac disorders, with a major emphasis on cancer and neurodegeneration. The S-nitrosoproteome, a term used to collectively refer to the diverse and dynamic repertoire of S-nitrosylated proteins, is relatively less explored in the field of redox biochemistry, in contrast to other covalently modified versions of the same set of proteins. Advancing research is gradually unveiling the enormous clinical importance of S-nitrosylation in the etiology of diseases and is opening up new avenues of prompt diagnosis that harness this phenomenon. Ever since the discovery of the two robust and highly conserved S-nitrosoglutathione reductase and thioredoxin systems as candidate denitrosylases, years of rampant speculation centered around the identification of specific substrates and other candidate denitrosylases, subcellular localization of both substrates and denitrosylases, the position of susceptible thiols, mechanisms of S-denitrosylation under basal and stimulus-dependent conditions, impact on protein conformation and function, and extrapolating these findings towards the understanding of diseases, aging and the development of novel therapeutic strategies. However, newer insights in the ever-expanding field of redox biology reveal distinct gaps in exploring the crucial crosstalk between the redoxins/major denitrosylase systems. Clarifying the importance of the functional overlap of the glutaredoxin, glutathione, and thioredoxin systems and examining their complementary functions as denitrosylases and antioxidant enzymatic defense systems are essential prerequisites for devising a rationale that could aid in predicting the extent of cell survival under high oxidative/nitrosative stress while taking into account the existence of the alternative and compensatory regulatory mechanisms. This review thus attempts to highlight major gaps in our understanding of the robust cellular redox regulation system, which is upheld by the concerted efforts of various denitrosylases and antioxidants.

10.
PLoS One ; 17(3): e0265890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35324977

RESUMO

Gestational diabetes mellitus (GDM) is associated with defective pancreatic ß-cell adaptation in pregnancy, but the underlying mechanism remains obscure. Our previous studies demonstrated that GDM women display increased plasma adrenomedullin (ADM) levels, and non-obese GDM mice show decreased serum concentrations of insulin and the number of ß-cells in pancreas islets. The aims of this study is to examine if ADM and its receptors are expressed in female mouse pancreas, and if so, whether insulin secretion is regulated by ADM in mouse ß-cell line, NIT-1 cells and isolated mouse pancreatic islets. Present study shows that ADM and its receptor components CRLR, RAMPs are present in mouse pancreatic islets and co-localized with insulin. The expressions of ADM, CRLR and RAMP2 in islets from pregnant mice are reduced compared to that of non-pregnant mice. NIT-1-ß cells express ADM and its receptor mRNA, and glucose dose-dependently stimulates expressions. Furthermore, ADM inhibits NIT-1-ß cell growth, and this inhibition is reversed by ADM antagonist, ADM22-52. The glucose-induced insulin secretion was suppressed by ADM in NIT-1-ß cells and isolated pancreatic islets from pregnant mice. These inhibitory effects are accompanied by upregulation of endoplasmic reticulum (ER) stress biomarker genes in NIT-1-ß cells. This study unveils that reduced ADM and its receptors may play a role in ß-cell adaptation during pregnancy, while increased plasma ADM in GDM may contribute to the ß-cells dysfunction, and blockade of ADM may reverse ß-cell insulin production.


Assuntos
Diabetes Gestacional , Células Secretoras de Insulina , Adrenomedulina/genética , Adrenomedulina/metabolismo , Animais , Diabetes Gestacional/metabolismo , Feminino , Glucose/metabolismo , Humanos , Insulina/metabolismo , Insulina Regular Humana/metabolismo , Células Secretoras de Insulina/metabolismo , Camundongos , Gravidez , Receptores de Adrenomedulina/metabolismo
11.
Med Chem ; 18(1): 115-121, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33327922

RESUMO

BACKGROUND: Due to the prevalence of type-2 diabetes across the globe, there is an unmet need to explore new molecular targets for the development of cost-effective and safer antihyperglycemic agents. OBJECTIVE: Structural modification of phytol and evaluation of in vitro, in vivo and in silico antihyperglycemic activity of derivatives establishing the preliminary structure activity relationship (SAR). METHODS: The semi-synthetic derivatives of phytol were prepared following previously described methods. The antihyperglycemic potential was measured in vitro in terms of increase in 2- deoxyglucose (2-DG) uptake by L-6 rat skeletal muscle cells as well as in vivo in sucrose-loaded (SLM) and streptozotocin (STZ)-induced diabetic rat models. The blood glucose profile was measured at 30, 60, 90, 120, 180, 240, 300 and 1440 min post administration of sucrose in rats. The in silico docking was performed on peroxisome proliferator-activated receptor gamma (PPARγ) as antidiabetic target along with absorption, distribution, metabolism, excretion and toxicity (ADMET) studies. RESULTS: Nine semi-synthetic ester derivatives: acetyl (1), lauroyl (2), palmitoyl (3), pivaloyl (4), trans-crotonyl (5), benzoyl (6), m-anisoyl (7), 3,4,5-trimethoxy benzoyl (8) cinnamoyl (9) along with bromo derivative (10) of phytol were prepared. The derivatives 9, 8 and 2 caused 4.5, 3.2 and 2.7 times more in vitro uptake of 2-DG respectively than rosiglitazone (ROSI). The derivatives showed significant improvement in oral glucose tolerance both in SLM (29.6-21%) as well as STZ-induced diabetic (30.8-19.0%) rats. The in silico ADMET, docking studies showed non-toxicity and high binding affinity with PPARγ. CONCLUSION: The potent antihyperglycemic activity with favorable pharmacokinetics supports phytol derivatives as a suitable antidiabetic lead.


Assuntos
Hipoglicemiantes , Fitol , Animais , Glicemia , Hipoglicemiantes/farmacologia , Fitol/farmacologia , Ratos , Rosiglitazona , Estreptozocina/toxicidade
12.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34558598

RESUMO

RATIONALE: Calcitonin gene-related peptide (CGRP) and its family members adrenomedullin (ADM) and adrenomedullin 2 (ADM2; also known as intermedin) support vascular adaptions in rat pregnancy. OBJECTIVE: This study aimed to assess the relaxation response of uterine artery (UA) for CGRP, ADM, and ADM2 in nonpregnant and pregnant women and identify the involved mechanisms. FINDINGS: (1) Segments of UA from nonpregnant women that were precontracted with U46619 (1µM) in vitro are insensitive to the hypotensive effects of CGRP, ADM, and ADM2; (2) CGRP, ADM, and ADM2 (0.1-100nM) dose dependently relax UA segments from pregnant women with efficacy for CGRP > ADM = ADM2; (3) the relaxation responses to CGRP, ADM, and ADM2 are differentially affected by the inhibitors of nitric oxide (NO) synthase (L-NAME), adenylyl cyclase (SQ22536), apamin, and charybdotoxin; (4) UA smooth muscle cells (UASMC) express mRNA for calcitonin receptor-like receptor (CRLR) and receptor activity modifying protein (RAMP)1 and RAMP2 but not RAMP3; (5) receptor heterodimer comprising CRLR/RAMP1 and CRLR/RAMP2 but not CRLR/RAMP3 is present in UA; (6) soluble fms-like tyrosine kinase (sFLT-1) and TNF-α treatment decrease the expression of RAMP1 mRNA (P < 0.05) in UASMC; and (7) sFLT-1 treatment impairs the association of CRLR with all 3 peptides while TNF-α inhibits the interaction of CGRP but not ADM or ADM2 with CRLR in UASMC (P < 0.05). CONCLUSIONS: Relaxation sensitivity of UA for CGRP, ADM, and ADM2 is increased during pregnancy via peptide-specific involvement of NO system and endothelium-derived hyperpolarizing factors; vascular disruptors such as sFLT-1 and TNFα adversely impact their receptor system in UASMC.


Assuntos
Adrenomedulina/fisiologia , Hormônios Peptídicos/fisiologia , Artéria Uterina/metabolismo , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacologia , Apamina , Charibdotoxina , Dimerização , Relação Dose-Resposta a Droga , Feminino , Humanos , Técnicas In Vitro , Proteínas de Membrana/metabolismo , Miócitos de Músculo Liso/metabolismo , Gravidez , RNA Mensageiro/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Proteína 2 Modificadora da Atividade de Receptores/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Receptores da Calcitonina/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
13.
JCI Insight ; 6(9)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33784258

RESUMO

Perilipin 2 (PLIN2) is a lipid droplet (LD) protein in ß cells that increases under nutritional stress. Downregulation of PLIN2 is often sufficient to reduce LD accumulation. To determine whether PLIN2 positively or negatively affects ß cell function under nutritional stress, PLIN2 was downregulated in mouse ß cells, INS1 cells, and human islet cells. ß Cell-specific deletion of PLIN2 in mice on a high-fat diet reduced glucose-stimulated insulin secretion (GSIS) in vivo and in vitro. Downregulation of PLIN2 in INS1 cells blunted GSIS after 24-hour incubation with 0.2 mM palmitic acid. Downregulation of PLIN2 in human pseudoislets cultured at 5.6 mM glucose impaired both phases of GSIS, indicating that PLIN2 is critical for GSIS. Downregulation of PLIN2 decreased specific OXPHOS proteins in all 3 models and reduced oxygen consumption rates in INS1 cells and mouse islets. Moreover, we found that PLIN2-deficient INS1 cells increased the distribution of a fluorescent oleic acid analog to mitochondria and showed signs of mitochondrial stress, as indicated by susceptibility to fragmentation and alterations of acyl-carnitines and glucose metabolites. Collectively, PLIN2 in ß cells has an important role in preserving insulin secretion, ß cell metabolism, and mitochondrial function under nutritional stress.


Assuntos
Secreção de Insulina/genética , Células Secretoras de Insulina/metabolismo , Gotículas Lipídicas/metabolismo , Perilipina-2/genética , Estresse Fisiológico/genética , Animais , Carnitina/análogos & derivados , Carnitina/metabolismo , Dieta Hiperlipídica , Regulação para Baixo , Glucose/metabolismo , Humanos , Técnicas In Vitro , Ilhotas Pancreáticas , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Ácido Oleico/metabolismo , Fosforilação Oxidativa , Estresse Oxidativo/genética , Consumo de Oxigênio/genética , Perilipina-2/metabolismo , Ratos
14.
Biol Reprod ; 104(5): 1071-1083, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33624744

RESUMO

Calcitonin gene-related peptide (CALCB), adrenomedullin (ADM), and adrenomedullin2 (ADM2) are hypotensive peptides that belong to CALCB family of peptides. Goal of this study was to identify the effect of fms-like tyrosine kinase (sFLT-1) and angiotensin2 (Ang2) on the function of these peptides in OA smooth muscle cells (OASMC) and assess the sensitivity of OA for these peptides in preeclampsia (PE) and normotensive pregnancy. METHODS: Peptide function was assessed by Cyclic adenosine monophosphate (cAMP) assays and wire myograph; mRNA expression by Polymerase chain reaction (PCR) and protein-protein interaction by proximity ligation assay and co-immunoprecipitation. FINDINGS: All three peptides increased cAMP synthesis in the order of efficacy CALCB > ADM = ADM2 and vascular endothelial growth factor (VEGF) mRNA in OASMC (P < 0.05); sFLT-1 mediated decrease in cAMP synthesis (P < 0.05) is differentially rescued by all three CALCB family peptides in OASMC (P < 0.005); sFLT-1 decreased receptor activity-modifying protein (RAMP)1 and RAMP2 mRNA expression (P < 0.05); Ang2 decreased the expression of calcitonin-receptor-like receptor and RAMP1 mRNA and desensitized CALCB and ADM2 receptors in OASMC (P < 0.05); sFLT-1 increased RAMP1and Ang2 type 1 receptor (AT1R) interaction in OASMC which is inhibited in presence of all three peptides; and all three peptides relax OA in PE with enhanced ADM2 response (P < 0.05). CONCLUSION: sFLT-1 and Ang2 impair OASMC mediated functional responses of CALCB family peptides which can be inhibited by respective peptide treatment. The sensitivity of OA for CALCB, ADM, and ADM2-mediated relaxation is retained in PE.


Assuntos
Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Proteínas de Transporte Vesicular/genética , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Feminino , Humanos , Família Multigênica , Gravidez , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Transporte Vesicular/metabolismo
15.
J Hum Reprod Sci ; 14(Suppl 1): S3-S30, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34975243

RESUMO

STUDY QUESTION: What are the good practices for the use of ADD-ON Treatments in IVF cycles in INDIA? WHAT IS ALREADY KNOWN: Add on treatments in IVF are procedures and technologies which are offered to patients in hope of improving the success rates. A lot of add on treatments exist; most of them have limited evidence and data for the Indian patient population is miniscule. These interventions may have limited effects, so it is imperative that any new technology that is offered is evaluated properly and has enough evidence to suggest that it is safe and effective. STUDY DESIGN SIZE DURATION: This is the report of a 2-day consensus meeting where two moderators were assigned to a group of experts to collate information on Add on treatments in IVF in INDIA. This meeting utilised surveys, available scientific evidence and personal laboratory experience into various presentations by experts on pre-decided specific topics. PARTICIPANTS/MATERIALS SETTING METHODS: Expert professionals from ISAR representing clinical and embryology fields. MAIN RESULTS AND THE ROLE OF CHANCE: The report is divided in various components including the health of the Offspring, the various ADD ons available to an ART center, consensus points for each technology & qualifications and trainings for embryologists, the report and recommendations of the expert panel reflect the discussion on each of the topics and try to lay down good practice points for labs to follow. LIMITATIONS REASONS FOR CAUTION: The recommendations are solely based on expert opinion. Future availability of data may warrant an update of the same. WIDER IMPLICATIONS OF THE FINDINGS: These guidelines can help labs across the country to standardise their ART services and improve clinical outcomes, it will also motivate clinics to collect data and report the use of Add ons to the national registry. STUDY FUNDING/COMPETING INTERESTS: The consensus meeting and writing of the paper was supported by funds from CooperSurgical India.

16.
Biochem Biophys Res Commun ; 532(2): 167-172, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32950230

RESUMO

MicroRNAs (miRs) are small non-coding RNAs that regulate the target gene expression. A change in miR profile in the pancreatic islets during diabetes is known, and multiple studies have demonstrated that miRs influence the pancreatic ß-cell function. The miR-204 is highly expressed in the ß-cells and reported to regulate insulin synthesis. Here we investigated whether the absence of miR-204 rescues the impaired glycemic control and obesity in the genetically diabetic (db/db) mice. We found that the db/db mice overexpressed miR-204 in the islets. The db/db mice lacking miR-204 (db/db-204-/-) initially develops hyperglycemia and obesity like the control (db/db) mice but later displayed a gradual improvement in glycemic control despite remaining obese. The db/db-204-/- mice had a lower fasting blood glucose and higher serum insulin level compared to the db/db mice. A homeostatic model assessment (HOMA) suggests the improvement of ß-cell function contributes to the improvement in glycemic control in db/db-204-/- mice. Next, we examined the cellular proliferation and endoplasmic reticulum (ER) stress and found an increased frequency of proliferating cells (PCNA + ve) and a decreased CHOP expression in the islets of db/db-204-/- mice. Next, we determined the effect of systemic miR-204 inhibition in improving glycemic control in the high-fat diet (HFD)-fed insulin-resistant mice. MiR-204 inhibition for 6 weeks improved the HFD-triggered impairment in glucose disposal. In conclusion, the absence of miR-204 improves ß-cell proliferation, decreases islet ER stress, and improves glycemic control with limited change in body weight in obese mice.


Assuntos
Células Secretoras de Insulina/fisiologia , MicroRNAs/genética , Obesidade/genética , Animais , Glicemia/genética , Glicemia/metabolismo , Proliferação de Células/fisiologia , Diabetes Mellitus Experimental/genética , Dieta Hiperlipídica/efeitos adversos , Estresse do Retículo Endoplasmático/fisiologia , Feminino , Controle Glicêmico , Hiperglicemia/genética , Insulina/sangue , Insulina/genética , Masculino , Camundongos Knockout , Camundongos Mutantes , MicroRNAs/antagonistas & inibidores
17.
J Immunol ; 204(12): 3262-3272, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32332108

RESUMO

The self-renewal ability is a unique property of fetal-derived innate-like B-1a lymphocytes, which survive and function without being replenished by bone marrow (BM) progenitors. However, the mechanism by which IgM-secreting mature B-1a lymphocytes self-renew is poorly understood. In this study, we showed that Bmi1 was critically involved in this process. Although Bmi1 is considered essential for lymphopoiesis, the number of mature conventional B cells was not altered when Bmi1 was deleted in the B cell lineage. In contrast, the number of peritoneal B-1a cells was significantly reduced. Peritoneal cell transfer assays revealed diminished self-renewal ability of Bmi1-deleted B-1a cells, which was restored by additional deletion of Ink4-Arf, the well-known target of Bmi1 Fetal liver cells with B cell-specific Bmi1 deletion failed to repopulate peritoneal B-1a cells, but not other B-2 lymphocytes after transplantation assays, suggesting that Bmi1 may be involved in the developmental process of B-1 progenitors to mature B-1a cells. Although Bmi1 deletion has also been shown to alter the microenvironment for hematopoietic stem cells, fat-associated lymphoid clusters, the reported niche for B-1a cells, were not impaired in Bmi1 -/- mice. RNA expression profiling suggested lysine demethylase 5B (Kdm5b) as another possible target of Bmi1, which was elevated in Bmi1-/- B-1a cells in a stress setting and might repress B-1a cell proliferation. Our work has indicated that Bmi1 plays pivotal roles in self-renewal and maintenance of fetal-derived B-1a cells.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Complexo Repressor Polycomb 1/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Subpopulações de Linfócitos B/fisiologia , Medula Óssea/metabolismo , Linhagem da Célula/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Microambiente Celular/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Linfócitos/metabolismo , Linfócitos/fisiologia , Linfopoese/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID
18.
Diabetes ; 2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32234723

RESUMO

Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse beta cells, LDs are prominent in human beta cells, however, the regulation of LD mobilization (lipolysis) in human beta cells remains unclear. We found that glucose increases lipolysis in non-diabetic human islets, but not in type 2 diabetic (T2D) islets, indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets (shATGL) increased triglycerides, and the number and size of LDs indicating that ATGL is the principal lipase in human beta cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS) and insulin secretion to IBMX and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL deficient INS1 cells and human pseudoislets showed reduced Stx1a, a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human beta cells and supports insulin secretion by stabilizing Stx1a. The dysregulated lipolysis may contribute to LD accumulation and beta cell dysfunction in T2D islets.

19.
Diabetes ; 69(6): 1178-1192, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32312867

RESUMO

Lipid droplets (LDs) are frequently increased when excessive lipid accumulation leads to cellular dysfunction. Distinct from mouse ß-cells, LDs are prominent in human ß-cells. However, the regulation of LD mobilization (lipolysis) in human ß-cells remains unclear. We found that glucose increases lipolysis in nondiabetic human islets but not in islets in patients with type 2 diabetes (T2D), indicating dysregulation of lipolysis in T2D islets. Silencing adipose triglyceride lipase (ATGL) in human pseudoislets with shRNA targeting ATGL (shATGL) increased triglycerides (TGs) and the number and size of LDs, indicating that ATGL is the principal lipase in human ß-cells. In shATGL pseudoislets, biphasic glucose-stimulated insulin secretion (GSIS), and insulin secretion to 3-isobutyl-1-methylxanthine and KCl were all reduced without altering oxygen consumption rate compared with scramble control. Like human islets, INS1 cells showed visible LDs, glucose-responsive lipolysis, and impairment of GSIS after ATGL silencing. ATGL-deficient INS1 cells and human pseudoislets showed reduced SNARE protein syntaxin 1a (STX1A), a key SNARE component. Proteasomal degradation of Stx1a was accelerated likely through reduced palmitoylation in ATGL-deficient INS1 cells. Therefore, ATGL is responsible for LD mobilization in human ß-cells and supports insulin secretion by stabilizing STX1A. The dysregulated lipolysis may contribute to LD accumulation and ß-cell dysfunction in T2D islets.


Assuntos
Células Secretoras de Insulina/fisiologia , Lipase/metabolismo , Gotículas Lipídicas/fisiologia , Sintaxina 1/metabolismo , Animais , Regulação para Baixo , Regulação Enzimológica da Expressão Gênica/fisiologia , Humanos , Insulina/metabolismo , Lipase/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Oxigênio/metabolismo , Consumo de Oxigênio , Sintaxina 1/genética
20.
Stem Cell Reports ; 13(1): 21-30, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31231025

RESUMO

Precursors of hematopoietic stem cells (pre-HSCs) have been identified as intermediate precursors during the maturation process from hemogenic endothelial cells to HSCs in the aorta-gonad-mesonephros (AGM) region of the mouse embryo at embryonic day 10.5. Although pre-HSCs acquire an efficient adult-repopulating ability after ex vivo co-culture, their native hematopoietic capacity remains unknown. Here, we employed direct transplantation assays of CD45-VE-cadherin(VC)+KIT+(V+K+) cells (containing pre-HSCs) into immunodeficient neonatal mice that permit engraftment of embryonic hematopoietic precursors. We found that freshly isolated V+K+ cells exhibited significantly greater B-1 lymphocyte-biased repopulating capacity than multilineage repopulating capacity. Additionally, B cell colony-forming assays demonstrated the predominant B-1 progenitor colony-forming ability of these cells; however, increased B-2 progenitor colony-forming ability emerged after co-culture with Akt-expressing AGM endothelial cells, conditions that support pre-HSC maturation into HSCs. Our studies revealed an unexpected B-1 lymphocyte bias of the V+K+ population and acquisition of B-2 potential during commitment to the HSC fate.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Desdiferenciação Celular , Diferenciação Celular , Células Endoteliais/citologia , Células-Tronco Hematopoéticas/citologia , Animais , Subpopulações de Linfócitos B/citologia , Biomarcadores , Linhagem da Célula , Técnicas de Cocultura , Embrião de Mamíferos , Células Endoteliais/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Hematopoese , Células-Tronco Hematopoéticas/metabolismo , Imunofenotipagem , Camundongos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...