Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
AAPS PharmSciTech ; 25(6): 149, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38954224

RESUMO

Silibinin (SIL) Encapsulated Nanoliquid Crystalline (SIL-NLCs) particles were prepared to study neuroprotective effect against amyloid beta (Aß1-42) neurotoxicity in Balb/c mice model. Theses NLCs were prepared through hot emulsification and probe sonication technique. The pharmacodynamics was investigatigated on Aß1-42 intracerebroventricular (ICV) injected Balb/c mice. The particle size, zeta potential and drug loading were optimized to be 153 ± 2.5 nm, -21 mV, and 8.2%, respectively. Small angle X-ray (SAXS) and electron microscopy revealed to crystalline shape of SIL-NLCs. Thioflavin T (ThT) fluroscence and circular dichroism (CD) technique were employed to understand monomer inhibition effect of SIL-NLCs on Aß1-4. In neurobehavioral studies, SIL-NLCs exhibited enhanced mitigation of memory impairment induced on by Aß1-42 in T-maze and new object recognition test (NORT). Whereas biochemical and histopathological estimation of brain samples showed reduction in level of Aß1-42 aggregate, acetylcholine esterase (ACHE) and reactive oxygen species (ROS). SIL-NLCs treated animal group showed higher protection against Aß1-42 toxicity compared to free SIL and Donopezil (DPZ). Therefore SIL-NLCs promises great prospect in neurodegenerative diseases such as Alzheimer's disease.


Assuntos
Peptídeos beta-Amiloides , Camundongos Endogâmicos BALB C , Fármacos Neuroprotetores , Fragmentos de Peptídeos , Silibina , Animais , Peptídeos beta-Amiloides/toxicidade , Peptídeos beta-Amiloides/metabolismo , Camundongos , Silibina/farmacologia , Silibina/administração & dosagem , Fragmentos de Peptídeos/toxicidade , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Masculino , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Tamanho da Partícula , Nanopartículas/química , Espécies Reativas de Oxigênio/metabolismo , Modelos Animais de Doenças , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Acetilcolinesterase/metabolismo
2.
Chem Biodivers ; : e202400709, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828832

RESUMO

Biochanin A, an isoflavone flavonoid with estrogenic activity, is naturally found in red clover and other legumes. It possesses a wide range of pharmacological properties, including antioxidant, anti-inflammatory, anti-apoptotic, neuroprotective, and anticancer effects. In recent years, a growing body of pre-clinical research has focused on exploring the therapeutic potential of biochanin A in various neurological disorders, such as Alzheimer's and Parkinson's disease, multiple sclerosis, epilepsy, ischemic brain injury, gliomas, and neurotoxicity. This comprehensive review aims to shed light on the underlying molecular mechanisms that contribute to the neuroprotective role of biochanin A based on previous pre-clinical studies. Furthermore, it provides a detailed overview of the protective effects of biochanin A in diverse neurological disorders. The review also addresses the limitations associated with biochanin A administration and discusses different approaches employed to overcome these challenges. Finally, it highlights the future opportunities for translating biochanin A from pre-clinical research to clinical studies while also considering its commercial viability as a dietary supplement or a potential treatment for various diseases.

3.
Nanomedicine ; 59: 102752, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38740358

RESUMO

Fisetin has displayed potential as an anticonvulsant in preclinical studies yet lacks clinical validation. Challenges like low solubility and rapid metabolism may limit its efficacy. This study explores fisetin-loaded chitosan nanoparticles (NP) to address these issues. Using a murine model of pilocarpine-induced temporal lobe epilepsy, we evaluated the anticonvulsant and neuroprotective effects of fisetin NP. Pilocarpine-induced seizures and associated neurobehavioral deficits were assessed after administering subtherapeutic doses of free fisetin and fisetin NP. Changes in ROS, inflammatory cytokines, and NLRP3/IL-18 expression in different brain regions were estimated. The results demonstrate that the fisetin NP exerts protection against seizures and associated depression-like behavior and memory impairment. Furthermore, biochemical, and histological examinations supported behavioral findings suggesting attenuation of ROS/TNF-α-NLRP3 inflammasome pathway as a neuroprotective mechanism of fisetin NP. These findings highlight the improved pharmacodynamics of fisetin using fisetin NP against epilepsy, suggesting a promising therapeutic approach against epilepsy and associated behavioral deficits.


Assuntos
Quitosana , Epilepsia do Lobo Temporal , Flavonóis , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nanopartículas , Pilocarpina , Espécies Reativas de Oxigênio , Fator de Necrose Tumoral alfa , Animais , Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/induzido quimicamente , Epilepsia do Lobo Temporal/patologia , Epilepsia do Lobo Temporal/metabolismo , Quitosana/química , Quitosana/farmacologia , Flavonóis/farmacologia , Camundongos , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inflamassomos/metabolismo , Inflamassomos/efeitos dos fármacos , Nanopartículas/química , Masculino , Espécies Reativas de Oxigênio/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Flavonoides/farmacologia , Flavonoides/administração & dosagem , Comportamento Animal/efeitos dos fármacos , Anticonvulsivantes/farmacologia , Fármacos Neuroprotetores/farmacologia
4.
Int J Biol Macromol ; 253(Pt 1): 126561, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37659493

RESUMO

One of the most prevalent neurodegenerative disorders is Alzheimer's disease (AD). Despite the pervasiveness of AD being considerable, the rates of both diagnosis and therapy are comparatively less and still lacking. For the treatment of AD, acetylcholinesterase inhibitors and NMDA receptor antagonists (Memantine) have received clinical approval. The approved drugs are only capable of mitigating the symptoms; however, halting the progression of the disease remains a matter of substantial concern. MicroRNAs (miRs) are a subclass of non-coding single-stranded RNA molecules that target mRNAs to control the expression of genes in certain tissues. Dysregulation in the expression and function of miRs contributes to a neurodegeneration-like pathogenesis seen in Alzheimer's disease (AD), featuring hallmark characteristics such as Aß aggregation, hyper-phosphorylation of Tau proteins, mitochondrial dysfunction, neuroinflammation, and apoptosis. These factors collectively underpin the cognitive deterioration and learning disabilities associated with AD. According to the research, numerous miRs have considerably different expression patterns in AD patients compared to healthy people. Due to these attributes, miRs prove to be effective diagnostic and therapeutic agents for AD. This review will examine clinical and preclinical data concerning the potential of miRs as diagnostic and therapeutic agents, utilizing various techniques (such as miR antagonists or inhibitors, miR agonists or mimics, miR sponges, and miR antisense oligonucleotides) to target specific pathogenic mechanisms in AD.


Assuntos
Doença de Alzheimer , MicroRNAs , Humanos , Doença de Alzheimer/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Acetilcolinesterase , Proteínas tau/metabolismo , Memantina , Peptídeos beta-Amiloides/metabolismo
5.
Phytother Res ; 37(11): 5159-5192, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37668281

RESUMO

Flavonoids are natural polyphenolic compounds considered safe, pleiotropic, and readily available molecules. It is widely distributed in various food products such as fruits and vegetables and beverages such as green tea, wine, and coca-based products. Many studies have reported the anticancer potential of flavonoids against different types of cancers, including solid tumors. The chemopreventive effect of flavonoids is attributed to various mechanisms, including modulation of autophagy, induction of cell cycle arrest, apoptosis, and antioxidant defense. Despite of significant anticancer activity of flavonoids, their clinical translation is limited due to their poor biopharmaceutical attributes (such as low aqueous solubility, limited permeability across the biological membranes (intestinal and blood-brain barrier), and stability issue in biological systems). A nanoparticulate system is an approach that is widely utilized to improve the biopharmaceutical performance and therapeutic efficacy of phytopharmaceuticals. The present review discusses the significant anticancer potential of promising flavonoids in different cancers and the utilization of nanoparticulate systems to improve their nanoantioxidant activity further to enhance the anticancer activity of loaded promising flavonoids. Although, various plant-derived secondary metabolites including flavonoids have been recommended for treating cancer, further vigilant research is warranted to prove their translational values.


Assuntos
Anticarcinógenos , Produtos Biológicos , Neoplasias , Humanos , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Flavonoides/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/prevenção & controle , Anticarcinógenos/farmacologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Produtos Biológicos/uso terapêutico
6.
Biology (Basel) ; 12(9)2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37759656

RESUMO

During the aging of the global population, the prevalence of neurodegenerative diseases will be continuously growing. Although each disorder is characterized by disease-specific protein accumulations, several common pathophysiological mechanisms encompassing both genetic and environmental factors have been detected. Among them, protein arginine methyltransferases (PRMTs), which catalyze the methylation of arginine of various substrates, have been revealed to regulate several cellular mechanisms, including neuronal cell survival and excitability, axonal transport, synaptic maturation, and myelination. Emerging evidence highlights their critical involvement in the pathophysiology of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), frontotemporal dementia-amyotrophic lateral sclerosis (FTD-ALS) spectrum, Huntington's disease (HD), spinal muscular atrophy (SMA) and spinal and bulbar muscular atrophy (SBMA). Underlying mechanisms include the regulation of gene transcription and RNA splicing, as well as their implication in various signaling pathways related to oxidative stress responses, apoptosis, neuroinflammation, vacuole degeneration, abnormal protein accumulation and neurotransmission. The targeting of PRMTs is a therapeutic approach initially developed against various forms of cancer but currently presents a novel potential strategy for neurodegenerative diseases. In this review, we discuss the accumulating evidence on the role of PRMTs in the pathophysiology of neurodegenerative diseases, enlightening their pathogenesis and stimulating future research.

7.
Neurotoxicology ; 97: 133-149, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37331635

RESUMO

Groundwater is considered safe, however, the occurrence of contaminants like arsenic and fluoride has raised a major healthcare concern. Clinical studies suggested that arsenic and fluoride co-exposure induced neurotoxicity, however efforts to explore safe and effective management of such neurotoxicity are limited. Therefore, we investigated the ameliorative effect of Fisetin against arsenic and fluoride subacute co-exposure-induced neurotoxicity, and associated biochemical and molecular changes. Male BALB/c mice were exposed to Arsenic (NaAsO2: 50 mg/L) and fluoride (NaF: 50 mg/L) through drinking water and fisetin (5, 10, and 20 mg/kg/day) was administered orally for 28 days. The neurobehavioral changes were recorded in the open field, rotarod, grip strength, tail suspension, forced swim, and novel object recognition test. The co-exposure resulted in anxiety-like behaviour, loss of motor coordination, depression-like behaviour, and loss of novelty-based memory, along with enhanced prooxidant, inflammatory markers and loss of cortical and hippocampal neurons. The treatment with fisetin reversed the co-exposure-induced neurobehavioral deficit along with restoration of redox & inflammatory milieu, and cortical and hippocampal neuronal density. Apart from antioxidants, inhibition of TNF-α/ NLRP3 expression has been suggested as one of the plausible neuroprotective mechanisms of Fisetin in this study.


Assuntos
Arsênio , Fluoretos , Camundongos , Animais , Masculino , Fluoretos/toxicidade , Arsênio/toxicidade , Inflamassomos , Fator de Necrose Tumoral alfa , Proteína 3 que Contém Domínio de Pirina da Família NLR
8.
J Biomater Sci Polym Ed ; 34(16): 2232-2254, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37379243

RESUMO

In Alzheimer's disease (AD), amyloid beta (Aß1-42) aggregate formation and neurofibrillary tangles are major pathological hallmarks which are related to neurodegeneration in the brain. To alleviate Aß1-42 fibrils toxicity vitamin E derivative tocopheryl polyethylene glycol succinate (TPGS) was conjugated with polyamidoamine (PAMAM) dendrimer through carbodiimide reaction to synthesize TPGS-PAMAM. This TPGS-PAMAM was employed to entrap neuroprotective agent piperine (PIP) through an anti-solvent technique to prepare PIP-TPGS-PAMAM. The dendrimer conjugate was prepared to reduce Aß1-42 induced neurotoxicity and increase acetylcholine levels in AD mice models. The synthesis of dendrimer conjugate was characterized through proton nuclear magnetic resonance (NMR) and Trinitrobenzene sulphonic acid assay (TNBS). Physical characterization of dendrimers conjugates were done through various spectroscopic, thermal and microscopy based techniques. PIP-TPGS-PAMAM showed 43.25 nm particle size with PIP percentage encapsulation efficiency of 80.35%. Further Aß1-42 fibril disaggregation effect of nanocarrier was evaluated using Thioflavin-T (ThT) assay and circular dichroism (CD). The neuroprotection studies for PIP-TPGS-PAMAM was evaluated against neurotoxicity induced using Aß1-42 intracerebroventricular (ICV) injected in Balb/c mice. The group of mice administered with PIP-TPGS-PAMAM exhibited an increase in the proportion of random alternations in T-maze test and novel object recognition test (NORT) exhibited an increase in working memory cognitive functions. The biochemical and histopathological analysis revealed PIP-TPGS-PAMAM treated groups enhanced acetylcholine levels, reduced ROS and Aß1-42 content significantly. Our findings imply that PIP-TPGS-PAMAM enhanced memory and reduced cognitive deficit in mice brain induced by Aß1-42 toxicity.


Assuntos
Peptídeos beta-Amiloides , Dendrímeros , Camundongos , Animais , Dendrímeros/toxicidade , Dendrímeros/química , Camundongos Endogâmicos BALB C , Acetilcolina , Vitamina E/química , alfa-Tocoferol , Polietilenoglicóis/química
9.
Cent Nerv Syst Agents Med Chem ; 23(1): 40-47, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37070440

RESUMO

BACKGROUND: The most widespread signalling system in the brain is the cholinergic system, which plays a central role in the progress of Alzheimer's diseases (AD). Current AD treatment primarily targets the neuronal acetylcholinesterase (AChE) enzyme. The finding of AChE activity may play a vital role in optimizing assays for drug discovery of new AChE inhibiting agents. During in-vitro assay of AChE activity, the use of various organic solvents is imperative. OBJECTIVE: The present study is designed to evaluate the effect of different organic solvents on enzyme activity and enzyme kinetics. METHOD: Organic solvents' AChE inhibitory potential (including enzyme kinetics: Vmax, Km and Kcat) was evaluated using substrate velocity curve by using non-linear reversion Michaelis-Menten kinetic function. RESULTS: DMSO was found to have the most potent AChE inhibitory effect, followed by acetonitrile and ethanol. The kinetic study revealed DMSO as a mixed inhibitory effect (competitive/noncompetitive manner), ethanol as non-competitive, and acetonitrile as a competitive inhibitor of the AChE enzyme. Methanol has shown a negligible impact on enzyme inhibition and kinetics, suggesting its suitability for the AChE assay. CONCLUSION: We assume that our study results will help design the experimental protocols and support analyzing investigational outcomes while screening and biological evaluation of new molecules using methanol as solvent/cosolvent.


Assuntos
Acetilcolinesterase , Inibidores da Colinesterase , Metanol , Acetonitrilas/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Dimetil Sulfóxido/química , Etanol , Cinética , Metanol/química , Solventes/química
10.
Eur J Neurol ; 30(11): 3557-3567, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36880679

RESUMO

The gut-brain axis augments the bidirectional communication between the gut and brain and modulates gut homeostasis and the central nervous system through the hypothalamic-pituitary-adrenal axis, enteroendocrine system, neuroendocrine system, inflammatory and immune pathways. Preclinical and clinical reports showed that gut dysbiosis might play a major regulatory role in neurological diseases such as epilepsy, Parkinson's, multiple sclerosis, and Alzheimer's disease. Epilepsy is a chronic neurological disease that causes recurrent and unprovoked seizures, and numerous risk factors are implicated in developing epilepsy. Advanced consideration of the gut-microbiota-brain axis can reduce ambiguity about epilepsy pathology, antiepileptic drugs, and effective therapeutic targets. Gut microbiota sequencing analysis reported that the level of Proteobacteria, Verrucomicrobia, Fusobacteria, and Firmicutes was increased and the level of Actinobacteria and Bacteroidetes was decreased in epilepsy patients. Clinical and preclinical studies also indicated that probiotics, ketogenic diet, faecal microbiota transplantation, and antibiotics can improve gut dysbiosis and alleviate seizure by enhancing the abundance of healthy biota. This study aims to give an overview of the connection between gut microbiota, and epilepsy, how gut microbiome changes may cause epilepsy, and whether gut microbiome restoration could be used as a treatment for epilepsy.

11.
Drug Discov Today ; 28(5): 103555, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36931386

RESUMO

Tailoring drug products to personalized medicines poses challenges for conventional dosage forms. The prominent reason is the restricted availability of flexible dosage strengths in the market. Inappropriate dosage strengths lead to adverse drug reactions or compromised therapeutic effects. The situation worsens when the drug has a narrow therapeutic window. To overcome these challenges, data-enriched edible pharmaceuticals (DEEP) are novel concepts for designing solid oral products. DEEP have individualized doses and information embedded in quick response (QR) code form. When data are presented in a QR code, the information is printed with edible ink that contains the drug in tailored doses required for the patients.


Assuntos
Sistemas de Liberação de Medicamentos , Medicina de Precisão , Humanos , Preparações Farmacêuticas , Tecnologia Farmacêutica , Formas de Dosagem
12.
ACS Chem Neurosci ; 14(6): 1033-1044, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36861262

RESUMO

Parkinson's disease (PD), one of the most common neurological diseases worldwide, is mainly characterized neuropathologically by the dopaminergic neurodegeneration in the substantia nigra pars compacta of the brainstem. Genetic and environmental factors contribute to PD pathophysiology through modulation of pleiotropic cellular mechanisms. The currently available treatment options focus only on replenishing dopamine and do not alter disease progression. Interestingly, garlic (Allium sativum), globally famed for its flavor and taste-enhancing properties, has shown protective activity in different PD models. Numerous chemical constituents of garlic, mainly the organosulfur compounds, have been shown to exhibit anti-Parkinsonian effects by targeting oxidative stress, mitochondrial impairment, and neuroinflammation-related signaling. However, despite its therapeutic potential against PD, the major bioactive components of garlic display some stability issues and some adverse effects. In the present review, we explore the therapeutic potential of garlic and its major constituents in PD, the molecular mechanisms responsible for its pharmaceutical activity, and the associated limitations that need to be overcome for its future potential use in clinical practice.


Assuntos
Alho , Doença de Parkinson , Humanos , Doença de Parkinson/genética , Antioxidantes/farmacologia , Estresse Oxidativo , Parte Compacta da Substância Negra , Dopamina/farmacologia , Neurônios Dopaminérgicos
13.
Metab Brain Dis ; 38(3): 873-919, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36807081

RESUMO

Parkinson's disease (PD) is one of the progressive neurological diseases which affect around 10 million population worldwide. The clinical manifestation of motor symptoms in PD patients appears later when most dopaminergic neurons have degenerated. Thus, for better management of PD, the development of accurate biomarkers for the early prognosis of PD is imperative. The present work will discuss the potential biomarkers from various attributes covering biochemical, microRNA, and neuroimaging aspects (α-synuclein, DJ-1, UCH-L1, ß-glucocerebrosidase, BDNF, etc.) for diagnosis, recent development in PD management, and major limitations with current and conventional anti-Parkinson therapy. This manuscript summarizes potential biomarkers and therapeutic targets, based on available preclinical and clinical evidence, for better management of PD.


Assuntos
MicroRNAs , Doença de Parkinson , Humanos , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Biomarcadores
14.
Mini Rev Med Chem ; 23(18): 1818-1837, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36786147

RESUMO

Flavonoids are natural polyphenolic compounds and constitute a major class of plant secondary metabolites. To date, structures of more than 10,000 different flavonoids have been elucidated, and most of them are present in cells and tissues of plant parts. Flavonoids have been reported to exert multiple physiological activities and are also consumed as dietary supplements. Flavonoids have been extensively explored as anticancer, anti-inflammatory, antidiabetic, antirheumatic, antioxidant, antimalarial, neuroprotective, cardioprotective, anti-angiogenic, and antiproliferative agents. Most of the flavonoids are biosynthesized in plants via the phenylpropanoid pathway. However, they are associated with some limitations. Chemical synthesis is an alternative strategy to improve the yield and obtain purified products but is hampered by drawbacks, such as intolerance to stressful lab conditions. Pharmacokinetics is the rate-limiting step defining the bioavailability and metabolism of flavonoids, though greatly influenced by their chemical structure. However, nanoformulation is an emerging technique to improve biopharmaceutical fate and achieve target drug delivery. Thus, much attention should be given to identifying other possible chemical approaches for synthesizing flavonoids and improving their pharmacokinetic profiling, hence potentiating their efficacy in clinic.


Assuntos
Antineoplásicos , Flavonoides , Flavonoides/farmacologia , Flavonoides/química , Sistemas de Liberação de Medicamentos , Antioxidantes/farmacologia , Antioxidantes/química , Suplementos Nutricionais , Plantas
15.
Bioengineering (Basel) ; 9(11)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36354542

RESUMO

Osteoporosis, a chronic bone disorder, is one of the leading causes of fracture and morbidity risk. Numerous medicinally important herbs have been evaluated for their efficacy in improving bone mass density in exhaustive preclinical and limited clinical studies. Nigella sativa L. has been used as local folk medicine, and traditional healers have used it to manage various ailments. Its reported beneficial effects include controlling bone and joint diseases. The present manuscript aimed to provide a sound discussion on the pharmacological evidence of N. sativa and its active constituent, thymoquinone, for its utility in the effective management of osteoporosis. N. sativa is reported to possess anti-IL-1 and anti-TNF-α-mediated anti-inflammatory effects, leading to positive effects on bone turnover markers, such as alkaline phosphatase and tartrate-resistant acid phosphatase. It is reported to stimulate bone regeneration by prompting osteoblast proliferation, ossification, and decreasing osteoclast cells. Thymoquinone from N. sativa has exhibited an antioxidant effect on bone tissue by reducing the FeNTA-induced oxidative stress. The present manuscript highlights phytochemistry, pharmacological effect, and the important mechanistic perspective of N. sativa and its active constituents for the management of osteoporosis. Further, it also provides sound discussion on the utilization of a nanotechnology-mediated drug delivery approach as a promising strategy to improve the therapeutic performance of N. sativa and its active constituent, thymoquinone, in the effective management of osteoporosis.

16.
Environ Toxicol Pharmacol ; 95: 103970, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36067934

RESUMO

Rapid industrial and technological development has impacted ecosystem homeostasis strongly. Arsenic is one of the most detrimental environmental toxins and its management with chelating agents remains a matter of concern due to associated adverse effects. Thus, safer and more effective alternative therapy is required to manage arsenic toxicity. Based on existing evidence, native and indigenous plant-based active biomolecules appear as a promising strategy to mitigate arsenic-induced toxicity with an acceptable safety profile. In this regard, various phytochemicals (flavonoids and stilbenoids) are considered important classes of polyphenolic compounds with antioxidant and chelation effects, which may facilitate the removal of arsenic from the body more effectively and safely with regard to conventional approaches. This review presents an overview of conventional chelating agents and the potential role of flavonoids and stilbenoids in ameliorating arsenic toxicity. This report may provide a roadmap for identifying novel prophylactic/therapeutic strategies for managing arsenic toxicity.


Assuntos
Intoxicação por Arsênico , Arsênio , Estilbenos , Antioxidantes/uso terapêutico , Arsênio/toxicidade , Intoxicação por Arsênico/tratamento farmacológico , Quelantes/uso terapêutico , Ecossistema , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Humanos , Compostos Fitoquímicos/uso terapêutico , Estilbenos/uso terapêutico
17.
J Biochem Mol Toxicol ; 36(8): e23113, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35642647

RESUMO

An outbreak of the novel beta coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) first came to light in December 2019, which has unfolded rapidly and turned out to be a global pandemic. Early prognosis of viral contamination involves speedy intervention, disorder control, and good-sized management of the spread of disease. Reverse transcription-polymerase chain reaction, considered the gold standard test for detecting nucleic acids and pathogen diagnosis, provides high sensitivity and specificity. However, reliance on high-priced equipped kits, associated reagents, and skilled personnel slow down sickness detection. Lately, the improvement of clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated protein)-based diagnostic systems has reshaped molecular diagnosis due to their low cost, simplicity, speed, efficiency, high sensitivity, specificity, and versatility, which is vital for accomplishing point-of-care diagnostics. We reviewed and summarized CRISPR-Cas-based point-of-care diagnostic strategies and research in these paintings while highlighting their characteristics and challenges for identifying SARS-CoV-2.


Assuntos
COVID-19 , SARS-CoV-2 , COVID-19/diagnóstico , Teste para COVID-19 , Sistemas CRISPR-Cas , Humanos , Pandemias , Testes Imediatos , SARS-CoV-2/genética
18.
Front Pharmacol ; 13: 805388, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35462934

RESUMO

Parkinson's disease (PD) is the second leading neurodegenerative disease that is characterized by severe locomotor abnormalities. Levodopa (L-DOPA) treatment has been considered a mainstay for the management of PD; however, its prolonged treatment is often associated with abnormal involuntary movements and results in L-DOPA-induced dyskinesia (LID). Although LID is encountered after chronic administration of L-DOPA, the appearance of dyskinesia after weeks or months of the L-DOPA treatment has complicated our understanding of its pathogenesis. Pathophysiology of LID is mainly associated with alteration of direct and indirect pathways of the cortico-basal ganglia-thalamic loop, which regulates normal fine motor movements. Hypersensitivity of dopamine receptors has been involved in the development of LID; moreover, these symptoms are worsened by concurrent non-dopaminergic innervations including glutamatergic, serotonergic, and peptidergic neurotransmission. The present study is focused on discussing the recent updates in molecular mechanisms and therapeutic approaches for the effective management of LID in PD patients.

19.
Biology (Basel) ; 11(1)2022 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-35053088

RESUMO

DNA methylation, in the mammalian genome, is an epigenetic modification that involves the transfer of a methyl group on the C5 position of cytosine to derive 5-methylcytosine. The role of DNA methylation in the development of the nervous system and the progression of neurodegenerative diseases such as Alzheimer's disease has been an interesting research area. Furthermore, mutations altering DNA methylation affect neurodevelopmental functions and may cause the progression of several neurodegenerative diseases. Epigenetic modifications in neurodegenerative diseases are widely studied in different populations to uncover the plausible mechanisms contributing to the development and progression of the disease and detect novel biomarkers for early prognosis and future pharmacotherapeutic targets. In this manuscript, we summarize the association of DNA methylation with the pathogenesis of the most common neurodegenerative diseases, such as, Alzheimer's disease, Parkinson's disease, Huntington diseases, and amyotrophic lateral sclerosis, and discuss the potential of DNA methylation as a potential biomarker and therapeutic tool for neurogenerative diseases.

20.
Life Sci ; 293: 120346, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35065989

RESUMO

Minocycline, a second-generation tetracycline antibiotic is being widely tested in animals as well as clinical settings for the management of multiple neurological disorders. The drug has shown to exert protective action in a multitude of neurological disorders including spinal-cord injury, stroke, multiple sclerosis, amyotrophic lateral sclerosis, Huntington's disease, and Parkinson's disease. Being highly lipophilic, minocycline easily penetrates the blood brain barrier and is claimed to have excellent oral absorption (~100% bioavailability). Minocycline possesses anti-inflammatory, immunomodulatory, and anti-apoptotic properties, thereby supporting its use in treating neurological disorders. The article henceforth reviews all the recent advances in the transformation of this antibiotic into a potential antiepileptic/antiepileptogenic agent. The article also gives an account of all the clinical trials undertaken till now validating the antiepileptic potential of minocycline. Based on the reported studies, minocycline seems to be an important molecule for treating epilepsy. However, the practical therapeutic implementations of this molecule require extensive mechanism-based in-vitro (cell culture) and in-vivo (animal models) studies followed by its testing in randomized, placebo controlled and double-blind clinical trials in large population as well as in different form of epilepsies.


Assuntos
Antibacterianos/uso terapêutico , Anticonvulsivantes/uso terapêutico , Reposicionamento de Medicamentos/métodos , Epilepsia/tratamento farmacológico , Minociclina/uso terapêutico , Animais , Reposicionamento de Medicamentos/tendências , Epilepsia/metabolismo , Humanos , Doenças do Sistema Nervoso/tratamento farmacológico , Doenças do Sistema Nervoso/metabolismo , Fármacos Neuroprotetores/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...