Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1196808, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37521927

RESUMO

Wheat stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), has re-emerged as one of the major concerns for global wheat production since the evolution of Ug99 and other virulent pathotypes of Pgt from East Africa, Europe, Central Asia, and other regions. Host resistance is the most effective, economic, and eco-friendly approach for managing stem rust. Understanding the virulence nature, genetic diversity, origin, distribution, and evolutionary pattern of Pgt pathotypes over time and space is a prerequisite for effectively managing newly emerging Pgt isolates through host resistance. In the present study, we monitored the occurrence of stem rust of wheat in India and neighboring countries from 2016 to 2022, collected 620 single-pustule isolates of Pgt from six states of India and Nepal, analyzed them on Indian stem rust differentials, and determined their virulence phenotypes and molecular genotypes. The Ug99 type of pathotypes did not occur in India. Pathotypes 11 and 40A were most predominant during these years. Virulence phenotyping of these isolates identified 14 Pgt pathotypes, which were genotyped using 37 Puccinia spp.-specific polymorphic microsatellites, followed by additional phylogenetic analyses using DARwin. These analyses identified three major molecular groups, demonstrating fewer lineages, clonality, and long-distance migration of Pgt isolates in India. Fourteen of the 40 recently released Indian wheat varieties exhibited complete resistance to all 23 Pgt pathotypes at the seedling stage. Twelve Sr genes were postulated in 39 varieties based on their seedling response to Pgt pathotypes. The values of slow rusting parameters i.e. coefficient of infection, area under disease progress curve, and infection rates, assessed at adult plant stage at five geographically different locations during two crop seasons, indicated the slow rusting behavior of several varieties. Six Sr genes (Sr2, Sr57, Sr58, Sr24, Sr31, and Sr38) were identified in 24 wheat varieties using molecular markers closely linked to these genes. These findings will guide future breeding programs toward more effective management of wheat stem rust.

2.
Front Nutr ; 10: 1105207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845058

RESUMO

Biofortification is gaining importance globally to improve human nutrition through enhancing the micronutrient content, such as vitamin A, iron, and zinc, in staple food crops. The present study aims to identify the chromosomal regions governing the grain iron concentration (GFeC), grain zinc concentration (GZnC), and thousand kernel weight (TKW) using recombinant inbred lines (RILs) in wheat, developed from a cross between HD3086 and HI1500. The experiment was conducted in four different production conditions at Delhi viz., control, drought, heat, and combined heat and drought stress and at Indore under drought stress. Grain iron and zinc content increased under heat and combined stress conditions, while thousand kernel weight decreased. Medium to high heritability with a moderate correlation between grain iron and zinc was observed. Out of 4,106 polymorphic markers between the parents, 3,407 SNP markers were used for linkage map construction which spanned over a length of 14791.18 cm. QTL analysis identified a total of 32 chromosomal regions governing the traits under study, which includes 9, 11, and 12 QTLs for GFeC, GZnC, and TKW, respectively. A QTL hotspot was identified on chromosome 4B which is associated with grain iron, grain zinc, and thousand kernel weight explaining the phenotypic variance of 29.28, 10.98, and 17.53%, respectively. Similarly, common loci were identified on chromosomes 4B and 4D for grain iron, zinc, and thousand kernel weight. In silico analysis of these chromosomal regions identified putative candidate genes that code for proteins such as Inositol 1,3,4-trisphosphate 5/6-kinase, P-loop containing nucleoside triphosphate hydrolase, Pleckstrin homology (PH) domains, Serine-threonine/tyrosine-protein kinase and F-box-like domain superfamily proteins which play role in many important biochemical or physiological process. The identified markers linked to QTLs can be used in MAS once successfully validated.

3.
Front Genet ; 13: 1034947, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36338980

RESUMO

Wheat is the staple food crop of global importance for its grain nutrient quality. Grain iron and zinc content of the wheat grain is an important quantitatively inherited trait that is influenced by the environmental factors such as drought and heat stress. Phenotypic evaluation of 295 advanced breeding lines from the wheat stress breeding program of IARI was carried out under timely sown irrigated (IR), restricted irrigated, and late-sown conditions at New Delhi during the cropping season of 2020-21, and grain iron (GFeC) and zinc (GZnC) contents were estimated from both control and treatments. A statistically significant increase in GFeC and GZnC was observed under stress conditions compared to that of the control. Genotyping was carried out with the SNPs from the 35K Axiom Breeder's array, and marker-trait association was identified by GWAS analysis. Of the 23 MTAs identified, seven were linked with GFeC and sixteen were linked with GZnC. In silico analysis revealed a few important transcripts involved in various plant metabolism, growth, and development activities such as auxin response factor, root UVB sensitive proteins, potassium transporter, glycosyl transferase, COBRA, and F-box-like domain. The identified MTAs can be used for molecular breeding after validation and also for rapid development of micronutrient-rich varieties of wheat to mitigate hidden hunger.

4.
Sci Rep ; 9(1): 5122, 2019 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-30914659

RESUMO

Crop varieties or genotypes of a given species are pivotal for agricultural production and ownership, management and improvement of their germplasm is a great challenge. Its morphological identification requires time, cost and descriptors are often compromised statistically due to phenotypic plasticity. Development of DNA based signature of varieties can overcome these limitations. There is a global need to implement world trade organization (WTO) and intellectual property rights (IPR) guidelines of Plant Breeders Rights (PBR) where DUS (distinctness, uniformity and stability) testing can be supplemented by DNA profile. Universalization and minimization of SNP number without compromising identification accuracy is the major challenge in development of varietal profile by rapid genotype assay. Besides this, there is no server-based approach reducing computational skill with global accessibility of referral phenotypic and genotypic data. We report world's first model web server for crop variety identification using >350 Indian wheat varieties and Axiom 35 K SNP chip data. Standard filtering and linkage disequilibrium approach were used to develop varietal signature in Linux using HTML, Java, PHP and MySQL with provision of QR code generator to facilitate bar-coding. Phylogenetic tree constructed by selected SNPs confirms six major trait based clusters of varieties and their pedigree. Our user friendly server based tool, VISTa (Variety Identification System of Triticum aestivum) ( http://webtom.cabgrid.res.in/vista ) can be used in DUS testing having dispute resolution of sovereignty and access benefit sharing (ABS) issues. This model approach can be used in other crops with pan-global level management of crop germplasm in endeavour of crop productivity.


Assuntos
Bases de Dados de Ácidos Nucleicos , Genoma de Planta , Genótipo , Modelos Genéticos , Polimorfismo de Nucleotídeo Único , Software , Triticum/genética
5.
Rev Sci Instrum ; 85(6): 066110, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24985874

RESUMO

We describe the design and implementation of a multi channel Doppler tuned spectrometer setup to study physics of highly charged ions at high resolution in a direct way. A unique Soller slit assembly coupled with a long one dimensional position sensitive proportional counter enables us to get distinct x-ray peaks at different angles, which allows us to cover large number of angle in one shot. By using this setup, 1s2s (3)S1 - 1s(2) (1)S0 M1 transition in He-like Fe has been resolved from its satellite line 1s2s2p 4P(5/2)° - 1s(2)2s (2)S(1/2) M2 transition in Li-like Fe and measured the lifetime of their respective upper levels with high precision.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...