Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Assay Drug Dev Technol ; 22(3): 97-117, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38489509

RESUMO

Nanotechnology is a captivating contemporary technology owing to its extensive range of potential applications. This study emphasizes nanomaterials, substances with a size <100 nm, offering better qualities than coarse particles. Nanoparticles have several advantages compared with conventional drug delivery methods, including enhanced bioavailability and a larger surface area because of their smaller particle size. These characteristics make the nanoparticles a viable clinical candidate. Controlled-release drug delivery systems and targeted drug delivery systems rely heavily on nanoparticles. Because traditional drug delivery methods fail to achieve targeted drug delivery, resulting in toxicity, low bioavailability, poor therapeutic outcomes, and so on, these drug nanoparticles excel in all these areas. Researchers are already interested in developing drug delivery systems such as niosomes, bilosomes, and dendrimers. Nanoemulsion is one of these technologies; nanoemulsions outperform traditional emulsions in terms of pharmacodynamics and pharmacokinetics. Nanoemulsion effectively surpasses the constraints of standard emulsions, primarily by offering enhanced bioavailability, reduced toxicity, improved absorption, and the potential to be used in targeted drug delivery or controlled-release drug delivery systems. This particular work explores several aspects of nanoemulsions, including their constituents, classification, techniques for preparation, criteria for assessment, commercial applications, and future prospects.


Assuntos
Emulsões , Nanopartículas , Emulsões/química , Nanopartículas/química , Humanos , Sistemas de Liberação de Medicamentos , Tamanho da Partícula , Nanotecnologia
2.
Med Chem ; 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38192143

RESUMO

The worldwide impact of cancer is further compounded by the constraints of current anticancer medications, which frequently exhibit a lack of selectivity, raise safety apprehensions, result in significant adverse reactions, and encounter resistance mechanisms. The current situation highlights the pressing need to develop novel and more precise anticancer agents that prioritize safety and target specificity. Remarkably, more than 85% of drugs with physiological activity contain heterocyclic structures or at least one heteroatom. Nitrogen-containing heterocycles hold a significant position among these compounds, emerging as the most prevalent framework within the realm of heterocyclic chemistry. This article explores the medicinal chemistry behind these molecules, highlighting their potential as game-changing possibilities for anticancer medication development. The analysis highlights the inherent structural variety in nitrogen-containing heterocycles, revealing their potential to be customized for creating personalized anticancer medications. It also emphasizes the importance of computational techniques and studies on the relationships between structure and activity, providing a road map for rational medication design and optimization. Nitrogen-containing heterocycles are a promising new area of study in the fight against cancer, and this review summarises the state of the field so far. By utilizing their inherent characteristics and exploiting cooperative scientific investigations, these heterocyclic substances exhibit potential at the forefront of pioneering therapeutic approaches in combating the multifaceted obstacles posed by cancer.

3.
Med Chem ; 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38279757

RESUMO

This study aims to provide a thorough analysis of nitrogen-containing heterocycles, focusing on their therapeutic implications for the development of targeted and effective antiviral drugs. To better understand how nitrogen-containing heterocycles can be used to create antiviral drugs, this review adopts a systematic literature review strategy to compile and analyze pertinent research studies. It combines information from various fields to understand better the compounds' mode of action and their therapeutic potential. This review paper summarizes data from multiple sources to highlight the promising potential of heterocycles containing nitrogen as promising possibilities for future antiviral treatments. The capacity to engage selectively and modulate critical pathways bodes well for their use in developing new viral therapies. In conclusion, nitrogen-containing heterocycles are shown to be of utmost importance in the field of medicinal chemistry, as emphasized by the review paper. It emphasizes the central importance of chemical insights and pharmacological potential in developing novel and effective antiviral medicines by bringing them together.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37807405

RESUMO

BACKGROUND: Organoids are in vitro models that exhibit a three-dimensional structure and effectively replicate the structural and physiological features of human organs. OBJECTIVE: This work examines the potential applications of organoid technology, as well as the challenges and future directions associated with its implementation. METHODS: The manuscript was put together by conducting a comprehensive literature review, which involved an in-depth evaluation of globally renowned scientific research databases. RESULTS: The field of organoids has generated significant attention due to its potential applications in tissue development and disease modelling, as well as its implications for personalised medicine, drug screening, and cell-based therapies. The utilisation of organoids has proven to be effective in the examination of various conditions, encompassing genetic disorders, cancer, neurodevelopmental disorders and infectious diseases. CONCLUSION: The exploration of the wider uses of organoids is still in its early phases. Research shall be conducted to integrate 3D organoid systems as alternatives for current models, potentially improving both fundamental and clinical studies in the future.

5.
Artigo em Inglês | MEDLINE | ID: mdl-37231727

RESUMO

Currently, there are no approved treatments for the fatal infectious coronavirus disease. The process of identifying new applications for approved pharmaceuticals is called drug repurposing. It is a very successful strategy for drug development as it takes less time and cost to uncover a therapeutic agent than the de novo procedure. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the seventh coronavirus that has been identified as a causative agent in humans. SARS-CoV-2 has been recorded in 213 countries, with over 31 million confirmed cases and an estimated death rate of 3%. Medication repositioning may indeed be regarded as a unique therapeutic option for COVID-19 in the present situation. There are various drugs and techniques, which are being used to treat the symptoms of COVID-19. These agents are directed against the viral replication cycle, viral entrance, and viral translocation to the nucleus. Additionally, some can boost the innate antiviral immune response. Drug repurposing is a sensible method and could be a vital approach to treating COVID-19. Combining some of the drugs or supplements with an immunomodulatory diet, psychological assistance, and adherence to standards can ultimately act against COVID-19. A better knowledge of the virus itself and its enzymes will enable the development of more precise and efficient direct-acting antivirals. The primary aim of this review is to present the various aspects of this disease, including various strategies against COVID-19.

6.
Curr Pharm Biotechnol ; 24(9): 1149-1163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36177622

RESUMO

By helping practitioners understand complicated and varied types of data, Artificial Intelligence (AI) has influenced medical practice deeply. It is the use of a computer to mimic intelligent behaviour. Many medical professions, particularly those reliant on imaging or surgery, are progressively developing AI. While AI cognitive component outperforms human intellect, it lacks awareness, emotions, intuition, and adaptability. With minimum human participation, AI is quickly growing in healthcare, and numerous AI applications have been created to address current issues. This article explains AI, its various elements and how to utilize them in healthcare. It also offers practical suggestions for developing an AI strategy to assist the digital healthcare transition.


Assuntos
Inteligência Artificial , Transição para Assistência do Adulto , Humanos
7.
J Oral Maxillofac Pathol ; 26(2): 285-286, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35968190

RESUMO

Background: Oral cancer is the 11thcommon cancer in the world and ranks 6thglobally in deaths. The incidence of oral cancer in India accounts for approximately 30%-40% of all cancers. Aims and Objective: The present study was undertaken to evaluate the expression of Vimentin and E-cadherin in different grades of oral epithelial dysplasias (OEDs) and oral squamous cell carcinoma (OSCC). Materials and Methods: Biopsies/blocks of oral cavity lesions were retrieved from the archives of the department. Normal oral mucosa (5 cases), oral epithelial dysplastic (60 cases) and different grades of OSCC (60 cases) evaluated by hematoxylin and eosin sections. Immunohistochemical analysis was done on the blocks and expression of E-cadherin and Vimentin was recorded. Results: Our study included various grades of OED, OSCC and normal mucosa as control cases. The mean age of OED and OSCC was 49 and 56 years, respectively, with male predominance. Tobacco habit was present in approximately 90% cases, and buccal mucosa was the most commonly involved site in oral cavity with whitish patch and ulceroproliferative lesions being the common clinical presentations respectively. In OED, downregulation and altered localization of e-cadherin (81.6%) and increased expression of vimentin (52.3%) along with their concurrent increase in the stroma represent epithelial mesenchymal transition. In OSCC, reduction in expression (<50%) for e-cadherin (56.6%) with altered localization for e-cadherin was seen in 88.3% of OSCC along with neoexpression of vimentin in the epithelial cells was seen in 68.3% suggestive of mesenchymal phenotypic modification (P = 0.05). Conclusion: It is very crucial to evaluate the invasiveness of dysplasia and tumor with specific molecular biomarker that may help in early prediction of malignancy and also guide in deciding best treatment strategy for established cases of malignancy.

8.
3 Biotech ; 12(6): 138, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35646503

RESUMO

Maize (Zea mays L.) is a major cereal crop grown in a large number of countries. Loss in maize yield due to biotic stresses including fungal phytopathogens is a matter of immense concern. Control measures applied for eradication of fungal phytopathogens in maize are not up to the mark and more often involve harsh chemical(s)/pesticide(s) that cause deleterious effects both in humans and soil biota. Greener alternatives, such as the use of rhizosphere microbes in the form of bioinoculants, have proven to be very successful in terms of enhancing crop yield and suppressing fungal phytopathogens. In the present study, fluorescent pseudomonads were isolated from the maize rhizosphere and monitored for their plant growth-promoting (PGP) and biocontrol activities against Fusarium moniliforme. Based on various PGP traits and biocontrol potential, isolate JM-1 was found to be most effective and as per 16S rRNA gene sequencing analysis was identified as Pseudomonas fluorescens. Further experiments showed that the biocontrol potential of JM-1 against ear rot fungus involved the production of antifungal compound 2,4-diacetylphloroglucinol (DAPG). When examined for antagonistic interaction under scanning electron microscopy (SEM), structural abnormality, hyphal lysis, and deformity in fungal mycelium were observed. In the pot experiment, application of talc-based JM-1 containing bioformulation (in pot trials) showed significant enhancement in maize growth parameters (including the seed number and weight) in comparison to control even in presence of the phytopathogen. Ear fresh weight, dry weight, number of seeds per plant, and 100-grain weight were found to increase significantly by 34, 34, 52, and 18% respectively, in comparison to control. P. fluorescens JM-1 can therefore be used as a bioinoculant for ear rot disease control and sustainably enhancing maize yield. Supplementary Information: The online version contains supplementary material available at 10.1007/s13205-022-03201-7.

9.
Front Psychol ; 13: 814224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572309

RESUMO

Introduction: The Covid-19 pandemic has been a major disruptor of routine life, resulting in increased stress and predisposing people to negative outcomes, such as insomnia, anxiety and hopelessness. Mind-body interventions have improved concentration, emotional balance, and positive emotions, with an enhanced sense of productivity, and self-confidence. We therefore hypothesized that exposure to an online mind-body intervention, "Inner Engineering Completion Online (IECO)," would reduce stress and promote well-being. Methods: This prospective cohort study enrolled participants registered for the IECO courses, which for the first time were delivered remotely, online. Participants learned a 21-min meditation practice called Shambhavi Mahamudra Kriya during the course, which incorporates controlled breathing and mediation techniques. Each enrolled participant was asked to complete self-reported electronic surveys at three key time points: at the time of consent, immediately after completing IECO, and 6 weeks after IECO completion. Effects of IECO practice were assessed using four well-validated neuropsychological scales: Perceived Stress Scale (PSS), Positive Emotion/Relationship/Engagement Scale (PERMA) Profiler, Pittsburgh Sleep Quality Index (PSQI), and Mindful Attention Awareness Scale (MAAS). A Signed Rank test was used to analyze the survey data and P-values of < 0.05 were considered statistically significant. Results: Of the 375 participants interested in participation, 164 participants were eligible. Sixty-eight participants completed surveys at all time points and were identified as compliant participants. The baseline median score for PSS in compliant participants (n = 95) was 13.5 (IQR 9, 18); immediate post-IECO median PSS score was 12 (IQR 8, 16) demonstrating a 1.5 unit decrease in PSS scores (p-value = 0.0023). Similarly, comparing PSS scores in compliant participants (n = 68) for immediate Post IECO [11.5 (IQR 8, 15.5)] to PSS scores at six weeks [8 (IQR 4.5, 12.5)] showed a statistically significant 3.5-unit decrease, indicating a reduction in stress upon routine practice of the intervention (p < 0.0001). Conclusion: Incorporating the remotely delivered mind-body intervention Shambhavi Mahamudra Kriya into daily life via the IECO program over as few as 6 weeks produced a significant stress reduction, improvement in sleep quality and mindfulness. Clinical Trial Registration: [ClinicalTrials.gov], identifier [NCT04189146].

10.
J Microsc Ultrastruct ; 10(1): 1-6, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433263

RESUMO

Background: The pathogenesis of oral submucous fibrosis (OSF) still remains conflicting and has been linked to alterations in epithelial thickness, fibrosis, and vascularity. Although changes in these individual parameters have been extensively studied in relation to epithelial dysplasia their combined relation with dysplasia has not been studied much. Any such relation, if present, may further help in understanding this disease process. Therefore, the aim of this study was to assess the relationship between epithelial thickness, fibrosis, and vascularity with dysplasia in OSF. Materials and Methods: The study consisted of 30 OSF patients. Incisional biopsy was taken from the most fibrosed area of the buccal mucosa. Hematoxylin-Eosin-stained slides were assessed for epithelial thickness, fibrosis, and vascularity using image analysis software. The slides were also assessed for epithelial dysplasia. Relationship of epithelial atrophy, fibrosis, and vascularity with dysplasia was assessed using one-way ANOVA. Pearson's correlation coefficient was used for evaluating the relationship between epithelial thickness, fibrosis, and vascularity. Results: Epithelial dysplasia was found in all patients. Eleven patients had mild (36. 67%), thirteen had moderate (43.33%), and six had severe (20%) dysplasia. None of the parameters were found to have a significant relationship with dysplasia. However, moderate and positive correlation was found between epithelial thickness and fibrosis. This relation was statistically significant. Conclusion: Positive correlation between epithelial thickness and fibrosis in present study therefore contradicts the hypothesis of fibrosis induced epithelial atrophy. As dysplasia is influenced by multiple factors therefore habits and burning sensation needs to be incorporated in future studies assessing dysplasia in OSF.

14.
Chem Rec ; 21(3): 594-614, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33615668

RESUMO

The design and self-assembly of supramolecular coordination complexes (SCCs) i. e., discrete cyclic metalloarchitectures such as cycles, cages, mesocates, and helicates with desired size, shape, and properties have been increasing exponentially owing to their potential applications in molecular sensors, molecular cargos, molecular recognition, and catalysis. The introduction of the organic motifs and metal complexes as a spacer provides functionality to the metalloarchitecture. This review mainly focusses on newly evolving spacer based ligands employed to yield simple to high-order metallosupramolecular assemblies using straight-forward approaches. The new spacers including corannulene, organic cyclic framework, bicyclic organic motifs, aliphatic chain, metalloligands, triarylboron, BODIPY, azaphosphatrane, phosphine, and thio/selenophosphates offer a great set of properties and in-built functionalities to the metalloarchitectures which are discussed in this review.

15.
Environ Sustain (Singap) ; 4(4): 585-588, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-38624910
16.
Front Microbiol ; 11: 567768, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193157

RESUMO

Soil salinization has emerged as one of the prime environmental constraints endangering soil quality and agricultural productivity. Anthropogenic activities coupled with rapid pace of climate change are the key drivers of soil salinity resulting in degradation of agricultural lands. Increasing levels of salt not only impair structure of soil and its microbial activity but also restrict plant growth by causing harmful imbalance and metabolic disorders. Potential of secondary metabolites synthesized by halotolerant plant growth promoting rhizobacteria (HT-PGPR) in the management of salinity stress in crops is gaining importance. A wide array of secondary metabolites such as osmoprotectants/compatible solutes, exopolysaccharides (EPS) and volatile organic compounds (VOCs) from HT-PGPR have been reported to play crucial roles in ameliorating salinity stress in plants and their symbiotic partners. In addition, HT-PGPR and their metabolites also help in prompt buffering of the salt stress and act as biological engineers enhancing the quality and productivity of saline soils. The review documents prominent secondary metabolites from HT-PGPR and their role in modulating responses of plants to salinity stress. The review also highlights the mechanisms involved in the production of secondary metabolites by HT-PGPR in saline conditions. Utilizing the HT-PGPR and their secondary metabolites for the development of novel bioinoculants for the management of saline agro-ecosystems can be an important strategy in the future.

17.
J Adv Res ; 26: 69-82, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33133684

RESUMO

BACKGROUND: The collective impact of climate change and soil salinity is continuously increasing the degraded lands across the globe, bringing agricultural productivity and food security under stress. The high concentration of salts in saline soils impose osmotic, ionic, oxidative and water stress in plants. Biological solutions can be the most reliable and sustainable approach to ensure food security and limit the use of agro-chemicals. AIM OF REVIEW: Halo-tolerant plant growth promoting rhizobacteria (HT-PGPR) are emerging as efficient biological tools to mitigate the toxic effects of high salt concentrations and improve the growth of plants, simultaneously remediating the degraded saline soils. The review explains the role of HT-PGPR in mitigating the salinity stress in plants through diverse mechanisms and concurrently leading to improvement of soil quality. KEY SCIENTIFIC CONCEPTS OF REVIEW: HT-PGPR are involved in alleviating the salinity stress in plants through a number of mechanisms evoking multipronged physiological, biochemical and molecular responses. These include changes in expression of defense-related proteins, exopolysaccharides synthesis, activation of antioxidant machinery, accumulation of osmolytes, maintaining the Na+ kinetics and improving the levels of phytohormones and nutrient uptake in plants. The modification of signaling by HT-PGPR inoculation under stress conditions elicits induced systemic resistance in plants which further prepares them against salinity stress. The role of microbial-mechanisms in remediating the saline soil through structural and compositional improvements is also important. Development of novel bioinoculants for saline soils based on the concepts presented in the review can be a sustainable approach in improving productivity of affected agro-ecosystems and simultaneously remediating them.

18.
Plants (Basel) ; 9(10)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053904

RESUMO

In this study, Pseudomonas putida BSP9 isolated from rhizosphere of Brassica juncea was investigated for its plant growth promoting and biosurfactant producing activities. The isolate showed the ability to produce indole acetic acid, siderophore, phosphate solubilization activity and was an efficient producer of biosurfactant. Purification (of the biosurfactant) by thin layer chromatography (TLC) and further characterization by Fourier transform infrared spectroscopy (FTIR) revealed that biosurfactant produced by the isolate belonged to the glycolipid category, which is largely produced by Pseudomonas sp. In addition, liquid chromatography-mass spectroscopy (LC-MS) analysis showed the presence of a mixture of six mono-rhamnolipidic and a di-rhamnolipidic congeners, confirming it as a rhamnolipid biosurfactant. Bioformulations were developed using BSP9 and its biosurfactant to check their impact on promoting plant growth in B. juncea. It was noted from the study that bioformulations amended with biosurfactant (singly or in combination with BSP9) resulted in enhancement in the growth parameters of B. juncea as compared to untreated control. Maximum increment was achieved by plants inoculated with bioformulation that had BSP9 plus biosurfactant. The study also suggested that growth promotion was significant up to a threshold level of biosurfactant and that further increasing the concentration did not further enhance the growth parameter values of the plant. The study proves that novel bioformulations can be developed by integrating plant growth promoting rhizobacteria (PGPR) and their biosurfactant, and they can be effectively used for increasing agricultural productivity while minimizing our dependence on agrochemicals.

19.
3 Biotech ; 10(8): 361, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32832323

RESUMO

In the present study halotolerant bacteria were isolated from saline soil (EC ~ 11.9). Based on salt tolerance and plant growth promoting characteristics isolate AF7 was selected for further study. It was identified as Alcaligenes sp. on the basis of protein profiling and 16S rRNA sequence homology. Interestingly, AF7 showed diverse PGP characters at different salinity levels. While phosphate solubilization activity was expressed up to 300 mM NaCl, siderophore production was shown up to 700 mM, zinc solubilization up to 1000 mM and indole acetic acid (IAA), gibberellic acid (GA) and exopolysaccharides (EPS) production were depicted till 1400 mM. Correlative and regression analysis suggested positive relation between IAA, GA, EPS, siderophore production and zinc solubilization capability of AF7 and salinity up to 300 mM NaCl. EPS was found to be the most significant response and there was 263% increment in presence of 300 mM NaCl when compared to non-saline control. Analysis also showed that while growth promoting attributes were significant up to a threshold salinity level, further increasing the stress deviates the mechanism towards survival involving proline, antioxidant and hydroxyl scavenging activities. Combination of halotolerant AF7 and EPS showed more than twofold increase in the vegetative growth parameters of rice at ~ 170 mM NaCl (EC 9 dS/m). The study shows the mechanisms/metabolites of the plant growth promoting bacterium (PGPB) AF7 prominently involved during the salinity stress. Study also proves that novel bioformulations can be developed by integrative use of EPS and salt tolerant-PGPB which can be effective for saline soils.

20.
Mini Rev Med Chem ; 20(19): 1944-1965, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32669077

RESUMO

Cancer is the world's second-largest cause of mortality and one of the biggest global health concerns. The prevalence and mortality rates of cancer remain high despite significant progress in cancer therapy. The search for more effective, as well as less toxic treatment methods for cancer, is at the focus of current studies. Thiophene and its derivatives have surged as an influential scaffold, which, because of their appreciable diversity in biological activities, has drawn the concerned interest of the researchers in the field of medicinal chemistry. By the affluent introduction of its derivatives, which have antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, the adaptability of the thiophene moiety has been displayed. The nature and positioning of the substitutions significantly impacted thiophene moiety activity. This decent array in the living response account about this moiety has picked plentiful researcher's consideration to inquire about it to its peculiar potential across certain activities. In the field of cancer therapy against different cancer cells, the structure-activity relationship for each of the derivatives showed an excellent understanding of thiophene moiety. Information from the various articles revealed the key role of thiophene moiety and its derivatives to develop the vital lead compound. The essential anticancer mechanisms identified include inhibition of the topoisomerase, inhibition of tyrosine kinase, tubulin interaction and apoptosis induction through the activation of reactive oxygen species. This review is an endeavor to promote the anticancer potential of the derivatives, whether having thiophene or condensed thiophene as a core moiety or as a substituent that can lead in the future to synthesize varieties of chemotherapeutic entities in the field of cancer treatment.


Assuntos
Antineoplásicos/química , Tiofenos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias/tratamento farmacológico , Pirimidinas/química , Relação Estrutura-Atividade , Tiofenos/farmacologia , Tiofenos/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...