Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Photochem Photobiol ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943225

RESUMO

Elevated global pollution level is the prime reason that contributes to the onset of various harmful health diseases. The products of Biginelli reaction are enormously used in the pharmaceutical industry as they have antiviral, antibacterial, and calcium channel modulation abilities. This work reports a novel eosin Y sensitized boron graphitic carbon nitride (EY-Ben-g-C3N4) as a photocatalyst that efficiently produced 3,4-dihydropyrimidine-2-(1H)-one by the Biginelli reaction of benzaldehyde, urea, and methyl acetoacetate. The photocatalyst EY-Ben-g-C3N4 showed a successful generation of 3,4-dihydropyrimidine-2-(1H)-one (Biginelli product) in good yield via photocatalysis which is an eco-friendly method and has facile operational process. In addition to the production of Biginelli products, the photocatalyst also showed a remarkable NADH regeneration of 81.18%. The incorporation of g-C3N4 with boron helps increase the surface area and the incorporation of eosin Y which is an inexpensive and non-toxic dye, and in Ben-g-C3N4, enhanced the light-harvesting capacity of the photocatalyst. The production of 3,4-dihydropyrimidine-2-(1H)-one and NADH by the EY-Ben-g-C3N4 photocatalyst is attributed to the requisite band gap, high molar absorbance, low rate of charge recombination, and increased capacity of the photocatalyst to harvest solar light energy.

2.
Chem Biodivers ; 21(6): e202400329, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38590163

RESUMO

The need for sunlight chemical renewal and contemporary organic transformation has fostered the advancement of environmentally friendly photocatalytic techniques. For the first time, we report on the novel crafting of a bright future with selenium-infused Eosin-B (Sein-E-B) nanocomposite photocatalysts in this work. The Sein-E-B nanocomposite materials were created using a hydrothermal process for solar chemical regeneration and organic transformation under visible light. The synthesized samples were subjected to UV-DRS-visible spectroscopy, FT-IR, SEM, EDX, EIS and XRD analysis. The energy band gap of the Sein-E-B nanocomposite photocatalyst was measured using UV-DRS, and the result was around 2.06 eV. to investigate the generated Sein-E-B catalytic activity as a nanocomposite for 1,4-NADH/NADPH re-formation and C-N bond activation. This novel photocatalyst offers a promising alternative for the regeneration of solar chemicals and C-N bond creation between pyrrole and aryl halides.


Assuntos
Nanocompostos , Catálise , Estrutura Molecular , Nanocompostos/química , Processos Fotoquímicos , Selênio/química
3.
Photochem Photobiol ; 99(4): 1080-1091, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36273273

RESUMO

Photocatalysis is a defendable manner for production of several organic chemicals, energy and its storage from solar energy. For the evolution of metal free, cost-effective catalyst a 2D composite has been appear as a photocatalyst. Here, we had reported the synthesis of a light harvesting composite as a photocatalyst which was assembled by a poly-condensation mechanism between graphitic carbon nitride and tetrakis(4-nitrophenyl) porphyrin and the resulting composite manifest the excellent light harvesting properties, suitable energy band and low charge recombination. The photocatalyst [(NO2 )4 TPP@g-C3 N4 ] enables the efficient photocatalytic production of nicotinamide adenine dinucleotide (NADH) from consumed NAD+ also the production of organic chemicals like 4-methoxybenzylimines from 4-methoxybenzylamines. The photocatalytic efficiency of the photocatalyst was estimated by the percentage of NADH regeneration and the percentage yield of organic transformations. It shows the tetrakis(4-nitrophenyl) porphyrin could enhance the charge transfer capacity of graphitic carbon nitride which shows excellent photocatalysis activities and organic transformations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA