Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Mol Biol Plants ; 27(12): 2787-2804, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35035136

RESUMO

Zinc (Zn) is a vital micronutrient from the perspective of biofortification and biotic stress endurance in pigeonpea. The ZIP transporters with domain (Pfam: PF02535) regulate uptake and transport of metal ions, including Zn, in consonance with plant metal homeostasis. Genome-wide analysis in pigeonpea identified 19 non-redundant members of ZIP family (CcZIP) that were analyzed for gene structure, conserved motifs and homology besides other structural and biochemical parameters. Intra-specific as well as the inter-specific phylogenetic relationships of these 19 CcZIPs were elucidated by comparison with ZIP proteins of Arabidopsis thaliana, Medicago truncatula, Phaseolus vulgaris and Glycine max. In addition to gene structure, the cis-regulatory elements (CREs) in the promoter region were also identified. It revealed several stress responsive CREs that might be regulatory for differential expression of CcZIP proteins. Expression analysis showed that both CcZIP3 and CcZIP15, having zinc deficiency responsive element, up-regulated in the reproductive leaf tissues and down-regulated in matured green pods of the pod borer resistant genotypes with higher zinc content. Alternately, the expression of CcZIP6 and CcZIP13 was higher in matured green pods than reproductive leaves of the resistant genotypes. These findings on differential expression indicate the possible role of these CcZIPs on the mobilization of Zn from leaves to pods, phloem loading and unloading, and higher accumulation of seed zinc in pod borer resistant genotypes used in this study. Further functional characterization of CcZIP genes could shed light on their role in bio-fortification and genetic improvement to inhibit the pod borer herbivory in pigeonpea. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-01111-1.

2.
Physiol Mol Biol Plants ; 26(12): 2371-2390, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33424153

RESUMO

Clitoria ternatea (L.) is a medicinal leguminous plant and is cultivated to cater the need of herbal industries and asthetic purposes. The unavailability of steady molecular marker impedes the genetic improvement of C. ternatea. In the present study, transferability of 98 pairs of Cajanus spp. specific SSR primers were assessed among 14 genotypes of C. ternatea, varied for their flower color, floral architecture and bio-metabolite (taraxerol and delphinidin) content, and out of them 43 had successfully amplified the fragments. Among them, 36 pairs of primers showed 100% transferability, whereas rest seven varied from 42.86 to 92.85% transferability. The transferable 43 pairs of SSR primers generated 196 alleles across the 14 genotypes and the AMOVA analysis showed moderate genetic variation (55.1%) among the genotypes of C. ternatea, which was also reinforced by Nei's genetic distance and gene identity estimates derived haplotype matrix. Similarly, both the principal coordinate analysis and dendrogram grouped these 14 genotypes of C. ternatea into two major clusters based on SSR allele distribution and frequency, and the clustering pattern is in accordance with petal color but in contrast to floral architecture. MCheza based outlier analysis revealed 16 alleles for balancing selection, which are putatively involved in the maintenance of genetic polymorphism in C. ternatea. Moreover, the estimates of molecular diversity and bio-metabolite content revealed the possible use of these genotypes in future breeding programme of this species.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA