Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Appl Biochem Biotechnol ; 195(12): 7859-7888, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36988841

RESUMO

Pollution by end-of-life electronics is a rapid ever-increasing threat and is a universal concern with production of million metric tons of these wastes per annum. Electronic wastes (E-waste) are rejected electric or electronic equipment which have no other applications. The aggrandized unproper land filling of E-waste may generate hazardous effects on living organisms and ecosystem. At present, millions of tons of E-waste await the advancement of more efficient and worthwhile recycling techniques. Recovery of base and critical elements from electronic scraps will not only reduce the mining of these elements from natural resources but also reduces the contamination caused by the hazardous chemicals (mostly organic micropollutants) released from these wastes when unproperly disposed of. Bioleaching is reported to be the most eco-friendly process for metal recycling from spent electronic goods. A detailed investigation of microbial biodiversity and a molecular understanding of the metabolic pathways of bioleaching microorganisms will play a vital function in extraction of valuable minerals from the end-of-life scraps. Bioleaching technique as an economic and green technology costs around 7 USD per kg for effective reusing of E-waste as compared to other physical and chemical techniques. This review provides a summary of worldwide scenario of electronic pollutants; generation, composition and hazardous components of electronic waste; recycling of valuable elements through bioleaching; mechanism of bioleaching; microorganisms involved in base and critical element recovery from E-waste; commercial bioleaching operations; and upcoming aspects of this eco-friendly technique.


Assuntos
Resíduo Eletrônico , Poluição Ambiental , Biotecnologia , Resíduo Eletrônico/análise , Reciclagem , Rios
2.
Biotechnol Genet Eng Rev ; : 1-16, 2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36447335

RESUMO

A wide range of plastic debris dumped into the ocean has recently gained concern of the marine ecosystems. Discarded and abandoned fishing nets, also known as ghost nets, are lost in the marine water and has no commercial significance. Additionally these fishing gear left out in the aquatic environment pose a severe risk to marine environment. Fishing nets, made up of synthetic plastic materials, are a major source of marine pollutants and act as a vector for transporting other toxic chemical pollutants. Approximately 10% of total marine plastic pollutants come from commercial fishing nets, and each year up to 1 million tons of fishing gear are discarded into the marine ecosystem. It can be estimated that by 2050 the amount will be doubled, adding 15-20 million metric tons of discarded lost fishing gears into ocean. The gradual and increased deposition of plastic pollutants in aquatic habitat also affects the whole food chain. Recently, microbial degradation of marine plastics has focussed the eyes of researchers and a lot of investigations on potential microbial degraders are under process. Microorganisms have developed the ability to grow under plastic stress condition and adapt to alter metabolic pathways by which they can directly feed upon marine plastic pollutants as sole carbon source. The present review compiles information on marine plastic pollution from discarded and abandoned fishing nets, their effect on aquatic ecosystems, marine animals and food chain and discusses microbial remediation strategies to control this pollution, especially and their implications in the marine ecosystems.

3.
Mar Pollut Bull ; 185(Pt A): 114254, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36306713

RESUMO

Synthetic microfibers are universally recognized as an emerging pollutant in all ecosystems. The present investigation focuses on the evaluation and quantification of synthetic microfiber released from domestic laundering wastewater from different regions of Bhubaneswar city of Odisha state of India. The estimated number of microfibers collected from 500 ml of sample varied from 200 to 500 in numbers with an average amount of biomass in the range of 0.4-4 g. The surface morphology of the samples was assessed by Scanning Electron Microscopic analysis which revealed that the fibers were having a length of approximately 10-30 mm and diameter of 10-20 µm. Carbonyl (CO) stretching band at 1711 cm-1 and Aldehyde (CH) Weak bond at 2917.38 cm-1 absorption were recorded from Fourier transform infrared spectroscopic analysis. As microfibers released from synthetic apparels are major source of environmental microplastic pollution their precise detection could help in controlling this problem.


Assuntos
Lavanderia , Poluentes Químicos da Água , Águas Residuárias/análise , Plásticos/análise , Ecossistema , Têxteis/análise , Poluentes Químicos da Água/análise
4.
Appl Biochem Biotechnol ; 194(10): 4639-4654, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35779174

RESUMO

Synthetic microfibers (SMFs), tiny particles which gets fragmented from large fragments of large synthetic fibers having less than 10 µm in diameter, have gathered ubiquitously in each and every corner of the earth. After their release into the aquatic environment, they remain there without natural degradation. Furthermore, it can be anticipated that floating units are transported along the food chain leading to bioaccumulation. It has been estimated that approximately 10-20 Mt of large fabric products as garbage enter into aquatic system per annum. Recently, these synthetic fragments have been investigated as transporters of heavy metal ions (HMs) showing different types of interactions. Yet, the underlying mechanism of these types of interaction is not known, especially the factors stimulating this process and how badly they affect biotic communities. Through this article, a detailed survey was carried out on the sources of microfibers and HMs into the aquatic environment, adsorption of different types of HMs on the SMF surface, mechanics favors these HM-MF interactions, particularly highlighting the significant roles of interaction on microbial biofilm formation. Their collaborative effects which possess harmful effects on aquatic as well as terrestrial organisms was also discussed. Lastly, the future investigations should focus on rigorous research in this field. This article to the best of our knowledge briefly describes the current research developments and emphasizes the vital function of the microorganisms on MFs-HMs interactions with the encouragement for rigorous research in this field to reveal accurate mechanisms and decrease the hazards related with MF presence.


Assuntos
Metais Pesados , Poluentes Químicos da Água , Adsorção , Íons , Metais Pesados/toxicidade , Têxteis , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/toxicidade
5.
Appl Biochem Biotechnol ; 194(10): 4745-4764, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34799825

RESUMO

Extensive use of these harmful dyes has resulted in the surplus presence of these emerging pollutants in the environment, thus demanding an instant and sensitive detection method. Various synthetic dyes are illegitimately mixed into food and other consuming items for displaying bright colours that attracts consumers. The synthetic dyes cause a number of environmental health hazards and promote toxicity, mutagenicity and carcinogenicity in humans. Despite these serious health glitches, synthetic dyes are widely used due to their much lower cost. As a result, a faster, more selective and extremely sensitive technology for detecting and quantifying hazardous dyes in trace amount is urgently needed. This topic is currently in its initial phases of development and needs continuous refinements, such as explaining various sensing methods and potential future uses linked with dye detection technologies. The present review encompasses a comprehensive literature survey on detection of dyes and latest progress in developing sensors for dye detection and summarizes different detection mechanisms, including biosensor-, optical- and electrochemical-based sensors. Detection methodologies are examined with a focus on biosensor-based recent advancements in dye detection and the growing demand for more appropriate systems in terms of accuracy and efficiency.


Assuntos
Técnicas Biossensoriais , Poluentes Ambientais , Biodegradação Ambiental , Corantes/toxicidade , Humanos
6.
Chemosphere ; 257: 127199, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32480092

RESUMO

The ever-increasing use of domestic washing machine by urban population is playing a major role in synthetic microfibers (SMFs) pollution via entering the ecosystem. Although many of the sources of fragmented plastic pollution in oceanic environments have been well known, urban areas are playing a major contributor due to huge populations. Thousands of scientific investigations are now reporting the adverse effect of these micro pollutants on aquatic and terrestrial environment, food chain and human health. Microfiber particles along with washing machine grey waters are emitted into urban drainage adjoining the lakes and river which ultimately mix in ocean water and after emission these tiny particles dispersed though out the ocean water by currents due to their low density. Environmental pollution cause by domestic laundering processes of synthetic clothes has been reported as the major cause of primary microplastics in the marine system. While community awareness and improved education will be successful in making public conscious of this problem, there needs to be more research on global scale to mitigate the ecological consequences of microfiber pollution by urban habitats through environmental friendly approach. This paper focuses to improve the understanding of urban population influence on microfiber pollution, their ecological toxicity to aquatic organism and humans, detection and characterization techniques with an emphasis on future research for prevention and control of microfiber pollution.


Assuntos
Monitoramento Ambiental/métodos , Plásticos/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos , Ecossistema , Poluentes Ambientais , Poluição Ambiental , Cadeia Alimentar , Humanos , Lagos , Oceanos e Mares , Rios , Têxteis , Água , Poluentes Químicos da Água/análise
7.
Mar Pollut Bull ; 140: 188-197, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30803634

RESUMO

Microfibers are emerging pollutants with widespread distribution in the environment and have adverse ecological impacts. Approximately 2 million tonnes of microfibers are released into the ocean every year from various sources, of which 700,000 micro fleeces are released from each garment through domestic laundry. Microfibers are the major marine pollutant throughout the world estimating 13 million tonnes of coastal synthetic fabric waste entering the ocean each year, out of which 2.5 million tonnes enter through adjoining rivers. It is anticipated that, to date, 1.5 million trillion of microfibers are present in the ocean. Microfibers are mistakenly ingested by marine animals and cause hazardous effects to aquatic species. Microfiber treatment techniques are under progress for efficient control of this pollutant. This article focuses on global microfiber generation and its sources, pathway of its entry into the environment and food chain, potential threat to aquatic animals and humans, present treatment technologies, and future challenges.


Assuntos
Monitoramento Ambiental/métodos , Têxteis/análise , Resíduos/análise , Poluentes Químicos da Água/análise , Animais , Organismos Aquáticos/metabolismo , Cadeia Alimentar , Humanos , Plásticos/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA