Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Appl Radiat Isot ; 201: 111016, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37708839

RESUMO

Soils which develop desiccation cracks after drying are unsuitable for the making of earthenware. The present work was carried out to demonstrate the use of Natural Gamma-ray Spectrometry (NGS) as a rapid sensing method to detect the variation of cracking behaviour and types of clay dominant in soil using samples collected from the study region. Natural gamma-ray intensities due to potassium (K) and equivalent thorium (eTh) radioisotopes present in soil were recorded using an NGS device. Circular soil cakes of set diameter were sun-dried to find shrinking and cracking variations. Other tests included measurement of particle size distribution, Atterberg indices, basic soil physico-chemical properties, exchangeable cation contents using ICP-OES and XRD identification of clays. 6 soil varieties were identified from the distribution of data points in the binary plots of gamma-ray potassium (GR-K) and thorium (GR-eTh) counts per sec (C/s). Variation of GR-K was observed to be wider (2.14 C/s to 2.54 C/s) than GR-eTh (0.44 C/s to 0.63 C/s). The measured GR-K counts reflect changes in illite content. The soils displayed 3 categories of shrinking and cracking behaviour. The soil variety which displayed maximum mild shrinkage without fine desiccation cracks on the set surface area has the highest GR-K counts. The soil shrinking and cracking variations were not clearly defined by the classification based on the texture and plasticity chart, though the latter indicated dominant smectites. A strong linear relationship between GR-K and exchangeable K (R2 = 0.84) indicates K+ contribution mainly from illite and dominance of other clay types in outliers. Higher levels of polyvalent cations known for binding clay aggregates were observed in the non-cracking soils. Concomitant higher GR-K levels indicate that shrinking soils lacking fine desiccation cracks are associated with fluvial sediments of the recent past with parental mica. This research concludes that NGS-based portable devices can be used for rapid sensing of soils to detect variation in shrinking and cracking behaviour and dominant clay type and thus can be used for identification of soil suitable for earthenware making.

2.
J Med Internet Res ; 25: e45556, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37310787

RESUMO

BACKGROUND: Multiple digital data sources can capture moment-to-moment information to advance a robust understanding of opioid use disorder (OUD) behavior, ultimately creating a digital phenotype for each patient. This information can lead to individualized interventions to improve treatment for OUD. OBJECTIVE: The aim is to examine patient engagement with multiple digital phenotyping methods among patients receiving buprenorphine medication for OUD. METHODS: The study enrolled 65 patients receiving buprenorphine for OUD between June 2020 and January 2021 from 4 addiction medicine programs in an integrated health care delivery system in Northern California. Ecological momentary assessment (EMA), sensor data, and social media data were collected by smartphone, smartwatch, and social media platforms over a 12-week period. Primary engagement outcomes were meeting measures of minimum phone carry (≥8 hours per day) and watch wear (≥18 hours per day) criteria, EMA response rates, social media consent rate, and data sparsity. Descriptive analyses, bivariate, and trend tests were performed. RESULTS: The participants' average age was 37 years, 47% of them were female, and 71% of them were White. On average, participants met phone carrying criteria on 94% of study days, met watch wearing criteria on 74% of days, and wore the watch to sleep on 77% of days. The mean EMA response rate was 70%, declining from 83% to 56% from week 1 to week 12. Among participants with social media accounts, 88% of them consented to providing data; of them, 55% of Facebook, 54% of Instagram, and 57% of Twitter participants provided data. The amount of social media data available varied widely across participants. No differences by age, sex, race, or ethnicity were observed for any outcomes. CONCLUSIONS: To our knowledge, this is the first study to capture these 3 digital data sources in this clinical population. Our findings demonstrate that patients receiving buprenorphine treatment for OUD had generally high engagement with multiple digital phenotyping data sources, but this was more limited for the social media data. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): RR2-10.3389/fpsyt.2022.871916.


Assuntos
Buprenorfina , Transtornos Relacionados ao Uso de Opioides , Feminino , Humanos , Masculino , Participação do Paciente , Buprenorfina/uso terapêutico , Avaliação Momentânea Ecológica , Etnicidade , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico
3.
Front Psychiatry ; 13: 871916, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35573377

RESUMO

Introduction: Across the U.S., the prevalence of opioid use disorder (OUD) and the rates of opioid overdoses have risen precipitously in recent years. Several effective medications for OUD (MOUD) exist and have been shown to be life-saving. A large volume of research has identified a confluence of factors that predict attrition and continued substance use during substance use disorder treatment. However, much of this literature has examined a small set of potential moderators or mediators of outcomes in MOUD treatment and may lead to over-simplified accounts of treatment non-adherence. Digital health methodologies offer great promise for capturing intensive, longitudinal ecologically-valid data from individuals in MOUD treatment to extend our understanding of factors that impact treatment engagement and outcomes. Methods: This paper describes the protocol (including the study design and methodological considerations) from a novel study supported by the National Drug Abuse Treatment Clinical Trials Network at the National Institute on Drug Abuse (NIDA). This study (D-TECT) primarily seeks to evaluate the feasibility of collecting ecological momentary assessment (EMA), smartphone and smartwatch sensor data, and social media data among patients in outpatient MOUD treatment. It secondarily seeks to examine the utility of EMA, digital sensing, and social media data (separately and compared to one another) in predicting MOUD treatment retention, opioid use events, and medication adherence [as captured in electronic health records (EHR) and EMA data]. To our knowledge, this is the first project to include all three sources of digitally derived data (EMA, digital sensing, and social media) in understanding the clinical trajectories of patients in MOUD treatment. These multiple data streams will allow us to understand the relative and combined utility of collecting digital data from these diverse data sources. The inclusion of EHR data allows us to focus on the utility of digital health data in predicting objectively measured clinical outcomes. Discussion: Results may be useful in elucidating novel relations between digital data sources and OUD treatment outcomes. It may also inform approaches to enhancing outcomes measurement in clinical trials by allowing for the assessment of dynamic interactions between individuals' daily lives and their MOUD treatment response. Clinical Trial Registration: Identifier: NCT04535583.

5.
Artigo em Inglês | MEDLINE | ID: mdl-34926979

RESUMO

Just-In-Time Adaptive Intervention (JITAI) is an emerging technique with great potential to support health behavior by providing the right type and amount of support at the right time. A crucial aspect of JITAIs is properly timing the delivery of interventions, to ensure that a user is receptive and ready to process and use the support provided. Some prior works have explored the association of context and some user-specific traits on receptivity, and have built post-study machine-learning models to detect receptivity. For effective intervention delivery, however, a JITAI system needs to make in-the-moment decisions about a user's receptivity. To this end, we conducted a study in which we deployed machine-learning models to detect receptivity in the natural environment, i.e., in free-living conditions. We leveraged prior work regarding receptivity to JITAIs and deployed a chatbot-based digital coach - Ally - that provided physical-activity interventions and motivated participants to achieve their step goals. We extended the original Ally app to include two types of machine-learning model that used contextual information about a person to predict when a person is receptive: a static model that was built before the study started and remained constant for all participants and an adaptive model that continuously learned the receptivity of individual participants and updated itself as the study progressed. For comparison, we included a control model that sent intervention messages at random times. The app randomly selected a delivery model for each intervention message. We observed that the machine-learning models led up to a 40% improvement in receptivity as compared to the control model. Further, we evaluated the temporal dynamics of the different models and observed that receptivity to messages from the adaptive model increased over the course of the study.

6.
Front Public Health ; 9: 625640, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746067

RESUMO

Background: The current COVID-19 coronavirus pandemic is an emergency on a global scale, with huge swathes of the population required to remain indoors for prolonged periods to tackle the virus. In this new context, individuals' health-promoting routines are under greater strain, contributing to poorer mental and physical health. Additionally, individuals are required to keep up to date with latest health guidelines about the virus, which may be confusing in an age of social-media disinformation and shifting guidelines. To tackle these factors, we developed Elena+, a smartphone-based and conversational agent (CA) delivered pandemic lifestyle care intervention. Methods: Elena+ utilizes varied intervention components to deliver a psychoeducation-focused coaching program on the topics of: COVID-19 information, physical activity, mental health (anxiety, loneliness, mental resources), sleep and diet and nutrition. Over 43 subtopics, a CA guides individuals through content and tracks progress over time, such as changes in health outcome assessments per topic, alongside user-set behavioral intentions and user-reported actual behaviors. Ratings of the usage experience, social demographics and the user profile are also captured. Elena+ is available for public download on iOS and Android devices in English, European Spanish and Latin American Spanish with future languages and launch countries planned, and no limits on planned recruitment. Panel data methods will be used to track user progress over time in subsequent analyses. The Elena+ intervention is open-source under the Apache 2 license (MobileCoach software) and the Creative Commons 4.0 license CC BY-NC-SA (intervention logic and content), allowing future collaborations; such as cultural adaptions, integration of new sensor-related features or the development of new topics. Discussion: Digital health applications offer a low-cost and scalable route to meet challenges to public health. As Elena+ was developed by an international and interdisciplinary team in a short time frame to meet the COVID-19 pandemic, empirical data are required to discern how effective such solutions can be in meeting real world, emergent health crises. Additionally, clustering Elena+ users based on characteristics and usage behaviors could help public health practitioners understand how population-level digital health interventions can reach at-risk and sub-populations.


Assuntos
COVID-19 , Pandemias , Humanos , Estilo de Vida , Saúde Mental , Pandemias/prevenção & controle , SARS-CoV-2
7.
Comput Methods Programs Biomed ; 212: 106461, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34736174

RESUMO

BACKGROUND AND OBJECTIVE: Researchers use wearable sensing data and machine learning (ML) models to predict various health and behavioral outcomes. However, sensor data from commercial wearables are prone to noise, missing, or artifacts. Even with the recent interest in deploying commercial wearables for long-term studies, there does not exist a standardized way to process the raw sensor data and researchers often use highly specific functions to preprocess, clean, normalize, and compute features. This leads to a lack of uniformity and reproducibility across different studies, making it difficult to compare results. To overcome these issues, we present FLIRT: A Feature Generation Toolkit for Wearable Data; it is an open-source Python package that focuses on processing physiological data specifically from commercial wearables with all its challenges from data cleaning to feature extraction. METHODS: FLIRT leverages a variety of state-of-the-art algorithms (e.g., particle filters, ML-based artifact detection) to ensure a robust preprocessing of physiological data from wearables. In a subsequent step, FLIRT utilizes a sliding-window approach and calculates a feature vector of more than 100 dimensions - a basis for a wide variety of ML algorithms. RESULTS: We evaluated FLIRT on the publicly available WESAD dataset, which focuses on stress detection with an Empatica E4 wearable. Preprocessing the data with FLIRT ensures that unintended noise and artifacts are appropriately filtered. In the classification task, FLIRT outperforms the preprocessing baseline of the original WESAD paper. CONCLUSION: FLIRT provides functionalities beyond existing packages that can address unmet needs in physiological data processing and feature generation: (a) integrated handling of common wearable file formats (e.g., Empatica E4 archives), (b) robust preprocessing, and (c) standardized feature generation that ensures reproducibility of results. Nevertheless, while FLIRT comes with a default configuration to accommodate most situations, it offers a highly configurable interface for all of its implemented algorithms to account for specific needs.


Assuntos
Dispositivos Eletrônicos Vestíveis , Algoritmos , Artefatos , Aprendizado de Máquina , Reprodutibilidade dos Testes
8.
Artigo em Inglês | MEDLINE | ID: mdl-35178497

RESUMO

Recent developments of novel in-vehicle interventions show the potential to transform the otherwise routine and mundane task of commuting into opportunities to improve the drivers' health and well-being. Prior research has explored the effectiveness of various in-vehicle interventions and has identified moments in which drivers could be interruptible to interventions. All the previous studies, however, were conducted in either simulated or constrained real-world driving scenarios on a pre-determined route. In this paper, we take a step forward and evaluate when drivers interact with in-vehicle interventions in unconstrained free-living conditions. To this end, we conducted a two-month longitudinal study with 10 participants, in which each participant was provided with a study car for their daily driving needs. We delivered two in-vehicle interventions - each aimed at improving affective well-being - and simultaneously recorded the participants' driving behavior. In our analysis, we found that several pre-trip characteristics (like trip length, traffic flow, and vehicle occupancy) and the pre-trip affective state of the participants had significant associations with whether the participants started an intervention or canceled a started intervention. Next, we found that several in-the-moment driving characteristics (like current road type, past average speed, and future brake behavior) showed significant associations with drivers' responsiveness to the intervention. Further, we identified several driving behaviors that "negated" the effectiveness of interventions and highlight the potential of using such "negative" driving characteristics to better inform intervention delivery. Finally, we compared trips with and without intervention and found that both interventions employed in our study did not have a negative effect on driving behavior. Based on our analyses, we provide solid recommendations on how to deliver interventions to maximize responsiveness and effectiveness and minimize the burden on the drivers.

9.
Sci Total Environ ; 750: 141565, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32882492

RESUMO

This study is an attempt to quantitatively test and compare novel advanced-machine learning algorithms in terms of their performance in achieving the goal of predicting flood susceptible areas in a low altitudinal range, sub-tropical floodplain environmental setting, like that prevailing in the Middle Ganga Plain (MGP), India. This part of the Ganga floodplain region, which under the influence of undergoing active tectonic regime related subsidence, is the hotbed of annual flood disaster. This makes the region one of the best natural laboratories to test the flood susceptibility models for establishing a universalization of such models in low relief highly flood prone areas. Based on highly sophisticated flood inventory archived for this region, and 12 flood conditioning factors viz. annual rainfall, soil type, stream density, distance from stream, distance from road, Topographic Wetness Index (TWI), altitude, slope aspect, slope, curvature, land use/land cover, and geomorphology, an advanced novel hybrid model Adaptive Neuro Fuzzy Inference System (ANFIS), and three metaheuristic models-based ensembles with ANFIS namely ANFIS-GA (Genetic Algorithm), ANFIS-DE (Differential Evolution), and ANFIS-PSO (Particle Swarm Optimization), have been applied for zonation of the flood susceptible areas. The flood inventory dataset, prepared by collected flood samples, were apportioned into 70:30 classes to prepare training and validation datasets. One independent validation method, the Area-Under Receiver Operating Characteristic (AUROC) Curve, and other 11 cut-off-dependent model evaluation metrices have helped to conclude that the ANIFS-GA has outperformed other three models with highest success rate AUC = 0.922 and prediction rate AUC = 0.924. The accuracy was also found to be highest for ANFIS-GA during training (0.886) & validation (0.883). Better performance of ANIFS-GA than the individual models as well as some ensemble models suggests and warrants further study in this topoclimatic environment using other classes of susceptibility models. This will further help establishing a benchmark model with capability of highest accuracy and sensitivity performance in the similar topographic and climatic setting taking assumption of the quality of input parameters as constant.

10.
Artigo em Inglês | MEDLINE | ID: mdl-32832933

RESUMO

Timely detection of an individual's stress level has the potential to improve stress management, thereby reducing the risk of adverse health consequences that may arise due to mismanagement of stress. Recent advances in wearable sensing have resulted in multiple approaches to detect and monitor stress with varying levels of accuracy. The most accurate methods, however, rely on clinical-grade sensors to measure physiological signals; they are often bulky, custom made, and expensive, hence limiting their adoption by researchers and the general public. In this article, we explore the viability of commercially available off-the-shelf sensors for stress monitoring. The idea is to be able to use cheap, nonclinical sensors to capture physiological signals and make inferences about the wearer's stress level based on that data. We describe a system involving a popular off-the-shelf heart rate monitor, the Polar H7; we evaluated our system with 26 participants in both a controlled lab setting with three well-validated stress-inducing stimuli and in free-living field conditions. Our analysis shows that using the off-the-shelf sensor alone, we were able to detect stressful events with an F1-score of up to 0.87 in the lab and 0.66 in the field, on par with clinical-grade sensors.

11.
Ann Behav Med ; 54(7): 518-528, 2020 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-32182353

RESUMO

BACKGROUND: The Assistant to Lift your Level of activitY (Ally) app is a smartphone application that combines financial incentives with chatbot-guided interventions to encourage users to reach personalized daily step goals. PURPOSE: To evaluate the effects of incentives, weekly planning, and daily self-monitoring prompts that were used as intervention components as part of the Ally app. METHODS: We conducted an 8 week optimization trial with n = 274 insurees of a health insurance company in Switzerland. At baseline, participants were randomized to different incentive conditions (cash incentives vs. charity incentives vs. no incentives). Over the course of the study, participants were randomized weekly to different planning conditions (action planning vs. coping planning vs. no planning) and daily to receiving or not receiving a self-monitoring prompt. Primary outcome was the achievement of personalized daily step goals. RESULTS: Study participants were more active and healthier than the general Swiss population. Daily cash incentives increased step-goal achievement by 8.1%, 95% confidence interval (CI): [2.1, 14.1] and, only in the no-incentive control group, action planning increased step-goal achievement by 5.8%, 95% CI: [1.2, 10.4]. Charity incentives, self-monitoring prompts, and coping planning did not affect physical activity. Engagement with planning interventions and self-monitoring prompts was low and 30% of participants stopped using the app over the course of the study. CONCLUSIONS: Daily cash incentives increased physical activity in the short term. Planning interventions and self-monitoring prompts require revision before they can be included in future versions of the app. Selection effects and engagement can be important challenges for physical-activity apps. CLINICAL TRIAL INFORMATION: This study was registered on ClinicalTrials.gov, NCT03384550.


Assuntos
Exercício Físico , Objetivos , Aplicativos Móveis , Motivação , Telemedicina/métodos , Caminhada , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Participação do Paciente , Distribuição Aleatória , Sistemas de Alerta , Smartphone , Design de Software , Suíça/epidemiologia
12.
J Subst Abuse Treat ; 112S: 4-11, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32220409

RESUMO

The application of digital technologies to better assess, understand, and treat substance use disorders (SUDs) is a particularly promising and vibrant area of scientific research. The National Drug Abuse Treatment Clinical Trials Network (CTN), launched in 1999 by the U.S. National Institute on Drug Abuse, has supported a growing line of research that leverages digital technologies to glean new insights into SUDs and provide science-based therapeutic tools to a diverse array of persons with SUDs. This manuscript provides an overview of the breadth and impact of research conducted in the realm of digital health within the CTN. This work has included the CTN's efforts to systematically embed digital screeners for SUDs into general medical settings to impact care models across the nation. This work has also included a pivotal multi-site clinical trial conducted on the CTN platform, whose data led to the very first "prescription digital therapeutic" authorized by the U.S. Food and Drug Administration (FDA) for the treatment of SUDs. Further CTN research includes the study of telehealth to increase capacity for science-based SUD treatment in rural and under-resourced communities. In addition, the CTN has supported an assessment of the feasibility of detecting cocaine-taking behavior via smartwatch sensing. And, the CTN has supported the conduct of clinical trials entirely online (including the recruitment of national and hard-to-reach/under-served participant samples online, with remote intervention delivery and data collection). Further, the CTN is supporting innovative work focused on the use of digital health technologies and data analytics to identify digital biomarkers and understand the clinical trajectories of individuals receiving medications for opioid use disorder (OUD). This manuscript concludes by outlining the many potential future opportunities to leverage the unique national CTN research network to scale-up the science on digital health to examine optimal strategies to increase the reach of science-based SUD service delivery models both within and outside of healthcare.


Assuntos
National Institute on Drug Abuse (U.S.) , Transtornos Relacionados ao Uso de Substâncias , Pesquisa sobre Serviços de Saúde , Humanos , Transtornos Relacionados ao Uso de Substâncias/terapia , Estados Unidos
13.
Artigo em Inglês | MEDLINE | ID: mdl-36189150

RESUMO

Recent advances in wearable sensor technologies have led to a variety of approaches for detecting physiological stress. Even with over a decade of research in the domain, there still exist many significant challenges, including a near-total lack of reproducibility across studies. Researchers often use some physiological sensors (custom-made or off-the-shelf), conduct a study to collect data, and build machine-learning models to detect stress. There is little effort to test the applicability of the model with similar physiological data collected from different devices, or the efficacy of the model on data collected from different studies, populations, or demographics. This paper takes the first step towards testing reproducibility and validity of methods and machine-learning models for stress detection. To this end, we analyzed data from 90 participants, from four independent controlled studies, using two different types of sensors, with different study protocols and research goals. We started by evaluating the performance of models built using data from one study and tested on data from other studies. Next, we evaluated new methods to improve the performance of stress-detection models and found that our methods led to a consistent increase in performance across all studies, irrespective of the device type, sensor type, or the type of stressor. Finally, we developed and evaluated a clustering approach to determine the stressed/not-stressed classification when applying models on data from different studies, and found that our approach performed better than selecting a threshold based on training data. This paper's thorough exploration of reproducibility in a controlled environment provides a critical foundation for deeper study of such methods, and is a prerequisite for tackling reproducibility in free-living conditions.

14.
JMIR Res Protoc ; 8(1): e11540, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30702430

RESUMO

BACKGROUND: Smartphones enable the implementation of just-in-time adaptive interventions (JITAIs) that tailor the delivery of health interventions over time to user- and time-varying context characteristics. Ideally, JITAIs include effective intervention components, and delivery tailoring is based on effective moderators of intervention effects. Using machine learning techniques to infer each user's context from smartphone sensor data is a promising approach to further enhance tailoring. OBJECTIVE: The primary objective of this study is to quantify main effects, interactions, and moderators of 3 intervention components of a smartphone-based intervention for physical activity. The secondary objective is the exploration of participants' states of receptivity, that is, situations in which participants are more likely to react to intervention notifications through collection of smartphone sensor data. METHODS: In 2017, we developed the Assistant to Lift your Level of activitY (Ally), a chatbot-based mobile health intervention for increasing physical activity that utilizes incentives, planning, and self-monitoring prompts to help participants meet personalized step goals. We used a microrandomized trial design to meet the study objectives. Insurees of a large Swiss insurance company were invited to use the Ally app over a 12-day baseline and a 6-week intervention period. Upon enrollment, participants were randomly allocated to either a financial incentive, a charity incentive, or a no incentive condition. Over the course of the intervention period, participants were repeatedly randomized on a daily basis to either receive prompts that support self-monitoring or not and on a weekly basis to receive 1 of 2 planning interventions or no planning. Participants completed a Web-based questionnaire at baseline and postintervention follow-up. RESULTS: Data collection was completed in January 2018. In total, 274 insurees (mean age 41.73 years; 57.7% [158/274] female) enrolled in the study and installed the Ally app on their smartphones. Main reasons for declining participation were having an incompatible smartphone (37/191, 19.4%) and collection of sensor data (35/191, 18.3%). Step data are available for 227 (82.8%, 227/274) participants, and smartphone sensor data are available for 247 (90.1%, 247/274) participants. CONCLUSIONS: This study describes the evidence-based development of a JITAI for increasing physical activity. If components prove to be efficacious, they will be included in a revised version of the app that offers scalable promotion of physical activity at low cost. TRIAL REGISTRATION: ClinicalTrials.gov NCT03384550; https://clinicaltrials.gov/ct2/show/NCT03384550 (Archived by WebCite at http://www.webcitation.org/74IgCiK3d). INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/11540.

15.
Artigo em Inglês | MEDLINE | ID: mdl-34262408

RESUMO

Wrist-worn devices hold great potential as a platform for mobile health (mHealth) applications because they comprise a familiar, convenient form factor and can embed sensors in proximity to the human body. Despite this potential, however, they are severely limited in battery life, storage, band-width, computing power, and screen size. In this paper, we describe the experience of the research and development team designing, implementing and evaluating Amulet - an open-hardware, open-software wrist-worn computing device - and its experience using Amulet to deploy mHealth apps in the field. In the past five years the team conducted 11 studies in the lab and in the field, involving 204 participants and collecting over 77,780 hours of sensor data. We describe the technical issues the team encountered and the lessons they learned, and conclude with a set of recommendations. We anticipate the experience described herein will be useful for the development of other research-oriented computing platforms. It should also be useful for researchers interested in developing and deploying mHealth applications, whether with the Amulet system or with other wearable platforms.

16.
Artigo em Inglês | MEDLINE | ID: mdl-36159209

RESUMO

Recent advancements in sensing techniques for mHealth applications have led to successful development and deployments of several mHealth intervention designs, including Just-In-Time Adaptive Interventions (JITAI). JITAIs show great potential because they aim to provide the right type and amount of support, at the right time. Timing the delivery of a JITAI such as the user is receptive and available to engage with the intervention is crucial for a JITAI to succeed. Although previous research has extensively explored the role of context in users' responsiveness towards generic phone notifications, it has not been thoroughly explored for actual mHealth interventions. In this work, we explore the factors affecting users' receptivity towards JITAIs. To this end, we conducted a study with 189 participants, over a period of 6 weeks, where participants received interventions to improve their physical activity levels. The interventions were delivered by a chatbot-based digital coach - Ally - which was available on Android and iOS platforms. We define several metrics to gauge receptivity towards the interventions, and found that (1) several participant-specific characteristics (age, personality, and device type) show significant associations with the overall participant receptivity over the course of the study, and that (2) several contextual factors (day/time, phone battery, phone interaction, physical activity, and location), show significant associations with the participant receptivity, in-the-moment. Further, we explore the relationship between the effectiveness of the intervention and receptivity towards those interventions; based on our analyses, we speculate that being receptive to interventions helped participants achieve physical activity goals, which in turn motivated participants to be more receptive to future interventions. Finally, we build machine-learning models to detect receptivity, with up to a 77% increase in F1 score over a biased random classifier.

17.
Proc ACM Int Conf Ubiquitous Comput ; 2017: 935-940, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29666845

RESUMO

In this work, we attempt to determine whether the contextual information of a participant can be used to predict whether the participant will respond to a particular Ecological Momentary Assessment (EMA) trigger. We use a publicly available dataset for our work, and find that by using basic contextual features about the participant's activity, conversation status, audio, and location, we can predict if an EMA triggered at a particular time will be answered with a precision of 0.647, which is significantly higher than a baseline precision of 0.41. Using this knowledge, the researchers conducting field studies can efficiently schedule EMAs and achieve higher response rates.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...