Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 15: 1351565, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500772

RESUMO

Multiple myeloma is an incurable cancer that originates from antibody-producing plasma cells. It is characterized by an intrinsic ability to produce large amounts of immunoglobulin-like proteins. The high rate of synthesis makes myeloma cells dependent on protein processing mechanisms related to the proteasome. This dependence made proteasome inhibitors such as bortezomib and carfilzomib one of the most important classes of drugs used in multiple myeloma treatment. Inhibition of the proteasome is associated with alteration of a number of important biological processes leading, in consequence, to inhibition of angiogenesis. The effect of drugs in this group and the degree of patient response to the treatment used is itself an extremely complex process that depends on many factors. At cellular level the change in sensitivity to proteasome inhibitors may be related to differences in the expression level of proteasome subunits, the degree of proteasome loading, metabolic adaptation, transcriptional or epigenetic factors. These are just some of the possibilities that may influence differences in response to proteasome inhibitors. This review describes the main cellular factors that determine the degree of response to proteasome inhibitor drugs, as well as information on the key role of the proteasome and the performance characteristics of the inhibitors that are the mainstay of multiple myeloma treatment.

2.
Cardiooncology ; 10(1): 9, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368369

RESUMO

The hematopoietic stem cell transplantation (HSCT) procedure is considered a cardiovascular burden. This is due to the potentially cardiotoxic cytostatic agents used before and the risks associated with peri-transplant procedures. We designed a pilot study to determine the clinical utility of the new ST2 marker; furthermore, we routinely assessed cardiac parameters in HSCT recipients. Based on previous cardio-oncology experience in lung and prostate cancer, we can confirm the prognostic and predictive value of classic cardiac biomarkers and modern echocardiography parameters such as global longitudinal strain of the left and right ventricle. After conducting this pilot study we can create a predictive and prognostic model for patients undergoing HSCT. This will greatly enrich our clinical practice, especially in treating older people.

3.
Biomed Pharmacother ; 170: 116090, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38169187

RESUMO

PURPOSE: The aim of the study was to evaluate the effect of silver nanoparticles hydrocolloids (AgNPs) on human corneal epithelial cells. Epithelial cells form the outermost and the most vulnerable to environmental stimuli layer of the cornea in the eye. Mechanical stress, UV radiation, and pathogens such as bacteria, viruses, and parasites challenge the fragile homeostasis of the eye. To help combat stress, infection, and inflammation wide portfolio of interventions is available. One of the oldest treatments is colloidal silver. Silver nanoparticle suspension in water is known for its anti-bacterial anti-viral and antiprotozoal action. However, AgNPs interact also with host cells, and the character of the interplay between corneal cells and silver seeks investigation. METHODS: The human epithelial corneal cell line (HCE-2) was cultured in vitro, treated with AgNPs, and subjected to UV. The cell's viability, migration, calcium concentration, and expression/protein level of selected proteins were investigated by appropriate methods including cytotoxicity tests, "wound healing" assay, Fluo8/Fura2 AM staining, qRT-PCR, and western blot. RESULTS: Incubation of human corneal cells (HCE-2) with AgNP did not affect cells viability but limited cells migration and resulted in altered calcium homeostasis, decreased the presence of ATP-activated P2X7, P2Y2 receptors, and enhanced the expression of PACAP. Furthermore, AgNPs pretreatment helped restrain some of the deleterious effects of UV irradiation. Interestingly, AgNPs had no impact on the protein level of ACE2, which is important in light of potential SARS-CoV-2 entrance through the cornea. CONCLUSIONS: Silver nanoparticles are safe for corneal epithelial cells in vitro.


Assuntos
Nanopartículas Metálicas , Prata , Humanos , Prata/metabolismo , Cálcio/metabolismo , Nanopartículas Metálicas/toxicidade , Receptores Purinérgicos P2Y2/metabolismo , Córnea , Células Epiteliais
4.
Haematologica ; 109(3): 877-887, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-37646661

RESUMO

Upregulation of a cyclin D gene determined by expression microarrays is an almost universal event in multiple myeloma (MM), but this finding has not been properly confirmed at the protein level. For this reason, we carried out a quantitative analysis of cyclin D proteins using a capillary electrophoresis nanoimmunoassay in newly diagnosed MM patients. Exclusive expression of cyclin D1 and D2 proteins was detected in 54 of 165 (33%) and 30 of 165 (18%) of the MM patients, respectively. Of note, cyclin D1 or D2 proteins were undetectable in 41% of the samples. High levels of cyclin D1 protein were strongly associated with the presence of t(11;14) or 11q gains. Cyclin D2 protein was detected in all the cases bearing t(14;16), but in only 24% of patients with t(4;14). The presence of cyclin D2 was associated with shorter overall survival (hazard ratio =2.14; P=0.017), although patients expressing cyclin D2 protein, but without 1q gains, had a favorable prognosis. In conclusion, although one of the cyclins D is overexpressed at the mRNA level in almost all MM patients, in approximately half of the patients this does not translate into detectable protein. This suggests that cyclins D could not play an oncogenic role in a proportion of patients with MM (clinicaltrials gov. identifier: NCT01916252).


Assuntos
Ciclina D1 , Mieloma Múltiplo , Humanos , Ciclina D1/genética , Ciclina D2/genética , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Perfilação da Expressão Gênica , Ciclina D
5.
Cancers (Basel) ; 14(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36428668

RESUMO

Multiple myeloma (MM) is a plasma cell-derived malignancy that stands for around 1.5% of newly discovered cancer cases. Despite constantly improving treatment methods, the disease is incurable with over 13,000 deaths in the US and over 30,000 in Europe. Recent studies suggest that extracellular vesicles (EVs) might play a significant role in the pathogenesis and evolution of MM. Further investigation of their role could prove to be beneficial in establishing new therapies and hence, improve the prognosis of MM patients. What is more, EVs might serve as novel markers in diagnosing and monitoring the disease. Great advancements concerning the position of EVs in the pathophysiology of MM have recently been shown in research and in this review, we would like to delve into the still expanding state of knowledge.

6.
Cancers (Basel) ; 14(18)2022 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-36139651

RESUMO

Multiple myeloma (MM) is the second most common hematological malignancy with a recurrent clinical course. The introduction of immunomodulatory drugs (IMiDs) was one of the milestones in MM therapy leading to a significant improvement in patients' prognosis. Currently, IMiDs are the backbone of MM therapy in newly diagnosed and relapsed/refractory settings. It is now known that IMiDs exert their anti-myeloma activity mainly by binding cereblon (CRBN), the substrate receptor protein of the CRL4 E3 ubiquitin ligase (CRL4CRBN) complex. By binding CRBN, IMiDs alter its substrate specificity, leading to ubiquitination and proteasomal degradation of proteins essential for MM cell survival. Following the success of IMiDs, it is not surprising that the possibility of using the CRL4CRBN complex's activity to treat MM is being further explored. In this review, we summarize the current state of knowledge about novel players in the MM therapeutic landscape, namely the CRBN E3 ligase modulators (CELMoDs), the next generation of IMiDs with broader biological activity. In addition, we discuss a new strategy of tailored proteolysis called proteolysis targeting chimeras (PROTACs) using the CRL4CRBN to degrade typically undruggable proteins, which may have relevance for the treatment of MM and other malignancies in the future.

7.
Biomedicines ; 10(7)2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35884979

RESUMO

Clonal evolution drives treatment failure in multiple myeloma (MM). Here, we used a custom 372-gene panel to track genetic changes occurring during MM progression at different stages of the disease. A tumor-only targeted next-generation DNA sequencing was performed on 69 samples sequentially collected from 30 MM patients. The MAPK/ERK pathway was mostly affected with KRAS mutated in 47% of patients. Acquisition and loss of mutations were observed in 63% and 37% of patients, respectively. Four different patterns of mutation evolution were found: branching-, mutation acquisition-, mutation loss- and a stable mutational pathway. Better response to anti-myeloma therapy was more frequently observed in patients who followed the mutation loss-compared to the mutation acquisition pathway. More than two-thirds of patients had druggable genes mutated (including cases of heavily pre-treated disease). Only 7% of patients had a stable copy number variants profile. Consequently, a redistribution in stages according to R-ISS between the first and paired samples (R-ISS″) was seen. The higher the R-ISS″, the higher the risk of MM progression and death. We provided new insights into the genetics of MM evolution, especially in heavily pre-treated patients. Additionally, we confirmed that redefining R-ISS at MM relapse is of high clinical value.

8.
Am J Hematol ; 97(6): 700-710, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35188691

RESUMO

Loss and/or mutation of the TP53 gene are associated with short survival in multiple myeloma, but the p53 landscape goes far beyond. At least 12 p53 protein isoforms have been identified as a result of a combination of alternative splicing, alternative promoters and/or alternative transcription site starts, which are grouped as α, ß, γ, from transactivation domain (TA), long, and short isoforms. Nowadays, there are no studies evaluating the expression of p53 isoforms and its clinical relevance in multiple myeloma (MM). We used capillary nanoimmunoassay to quantify the expression of p53 protein isoforms in CD138-purified samples from 156 patients with newly diagnosed MM who were treated as part of the PETHEMA/GEM2012 clinical trial and investigated their prognostic impact. Quantitative real-time polymerase chain reaction was used to corroborate the results at RNA levels. Low and high levels of expression of short and TAp53ß/γ isoforms, respectively, were associated with adverse prognosis in MM patients. Multivariate Cox models identified high levels of TAp53ß/γ (hazard ratio [HR], 4.49; p < .001) and high-risk cytogenetics (HR, 2.69; p < .001) as independent prognostic factors associated with shorter time to progression. The current cytogenetic-risk classification was notably improved when expression levels of p53 protein isoforms were incorporated, whereby high-risk MM expressing high levels of short isoforms had significantly longer survival than high-risk patients with low levels of these isoforms. This is the first study that demonstrates the prognostic value of p53 isoforms in MM patients, providing new insights on the role of p53 protein dysregulation in MM biology.


Assuntos
Mieloma Múltiplo , Proteína Supressora de Tumor p53 , Genes p53 , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/terapia , Prognóstico , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
J Clin Med ; 10(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207079

RESUMO

Immunomodulatory drugs (IMiDs) are effective in the treatment of multiple myeloma (MM), myelodysplastic syndrome with deletion of chromosome 5q and other haematological malignancies. Recent studies showed that IMiDs bind to cereblon (CRBN), a substrate receptor of the CRL4-CRBN complex, to induce the ubiquitination and degradation of IKZF1 and IKZF3 in MM cells, contributing to their anti-myeloma activity. We aimed to determine whether the CRL4-CRBN complex proteins' expression predicts the prognosis of MM patients treated with IMiDs. Here, we evaluated the expression of CRL4-CRBN complex proteins and their downstream targets with immunohistochemistry (IHC) staining in 130 bone marrow samples from MM patients treated with thalidomide or lenalidomide-based regimens. We found that the expression of CRBN and CUL4A was associated with the superior IMiD-based treatment response (p = 0.007 and p = 0.007, respectively). Moreover, the CUL4A expression was associated with improved PFS (HR = 0.66, 95% CI 0.44-0.99; p = 0.046) and DDB1 expression showed a negative impact on OS both in the univariate (HR = 2.75, 95% CI 1.65-4.61; p = 0.001) and the multivariate (HR 3.67; 95% CI 1.79-7.49; p < 0.001) analysis. Overall, our data suggest that the expression of DDB1, CUL4A and CRBN assessed by IHC predicts the clinical course of MM patients and identifies patients with a high probability of responding to IMiD-based therapy.

10.
Blood Adv ; 4(23): 6023-6033, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33284947

RESUMO

The search for biomarkers based on the mechanism of drug action has not been thoroughly addressed in the therapeutic approaches to multiple myeloma (MM), mainly because of the difficulty in analyzing proteins obtained from purified plasma cells. Here, we investigated the prognostic impact of the expression of 12 proteins involved in the mechanism of action of bortezomib, lenalidomide, and dexamethasone (VRD), quantified by capillary nanoimmunoassay, in CD138-purified samples from 174 patients with newly diagnosed MM treated according to the PETHEMA/GEM2012 study. A high level of expression of 3 out of 5 proteasome components tested (PSMD1, PSMD4, and PSMD10) negatively influenced survival. The 5 analyzed proteins involved in lenalidomide's mode of action were associated with time to progression (TTP); low levels of cereblon and IRF4 protein and high levels of Ikaros, AGO2, and Aiolos were significantly associated with shorter TTP. Although the glucocorticoid receptor (GCR) level by itself had no significant impact on MM prognosis, a high XPO1 (exportin 1)/GCR ratio was associated with shorter TTP and progression-free survival (PFS). The multivariate Cox model identified high levels of PSMD10 (hazard ratio [HR] TTP, 3.49; P = .036; HR PFS, 5.33; P = .004) and Ikaros (HR TTP, 3.01, P = .014; HR PFS, 2.57; P = .028), and low levels of IRF4 protein expression (HR TTP, 0.33; P = .004; HR PFS, 0.35; P = .004) along with high-risk cytogenetics (HR TTP, 3.13; P < .001; HR PFS, 2.69; P = .002), as independently associated with shorter TTP and PFS. These results highlight the value of assessing proteins related to the mechanism of action of drugs used in MM for predicting treatment outcome.


Assuntos
Mieloma Múltiplo , Bortezomib/uso terapêutico , Dexametasona , Humanos , Fator de Transcrição Ikaros , Fatores Reguladores de Interferon , Lenalidomida , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/tratamento farmacológico , Complexo de Endopeptidases do Proteassoma , Proteínas Proto-Oncogênicas
11.
Materials (Basel) ; 13(15)2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32756412

RESUMO

The interest around the graphene family of materials is constantly growing due to their potential application in biomedical fields. The effect of graphene and its derivatives on cells varies amongst studies depending on the cell and tissue type. Since the toxicity against non-adherent cell lines has barely been studied, we investigated the effect of graphene and two different graphene oxides against four multiple myeloma cell lines, namely KMS-12-BM, H929, U226, and MM.1S, as well as two non-Hodgkin lymphoma cells lines, namely KARPAS299 and DOHH-2. We performed two types of viability assays, MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide conversion) and ATP (adenosine triphosphate detection), flow cytometry analysis of apoptosis induction and cell cycle, cell morphology, and direct interaction analysis using two approaches-visualization of living cells by two different systems, and visualization of fixed and dyed cells. Our results revealed that graphene and graphene oxides exhibit low to moderate cytotoxicity against cells, despite visible interaction between the cells and graphene oxide. This creates possibilities for the application of the selected graphene materials for drug delivery systems or theragnostics in hematological malignancies; however, further detailed studies are necessary to explain the nature of interactions between the cells and the materials.

12.
Blood Cancer J ; 9(12): 90, 2019 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-31748515

RESUMO

Primary plasma cell leukemia (pPCL) is a highly aggressive plasma cell dyscrasia characterised by short remissions and very poor survival. Although the 17p deletion is associated with poor outcome and extramedullary disease in MM, its presence does not confer the degree of aggressiveness observed in pPCL. The comprehensive exploration of isoform expression and RNA splicing events may provide novel information about biological differences between the two diseases. Transcriptomic studies were carried out in nine newly diagnosed pPCL and ten MM samples, all of which harbored the 17p deletion. Unsupervised cluster analysis clearly distinguished pPCL from MM samples. In total 3584 genes and 20033 isoforms were found to be deregulated between pPCL and MM. There were 2727 significantly deregulated isoforms of non-differentially expressed genes. Strangely enough, significant differences were observed in the expression of spliceosomal machinery components between pPCL and MM, in respect of the gene, isoform and the alternative splicing events expression. In summary, transcriptome analysis revealed significant differences in the relative abundance of isoforms between pPCL and MM, even when they both had the 17p deletion. The mRNA processing pathway including RNA splicing machinery emerged as one of the most remarkable mechanisms underlying the biological differences between the two entities.


Assuntos
Patrimônio Genético , Predisposição Genética para Doença , Leucemia Plasmocitária/genética , Mieloma Múltiplo/genética , Transcriptoma , Idoso , Idoso de 80 Anos ou mais , Processamento Alternativo , Biomarcadores Tumorais , Aberrações Cromossômicas , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Estudos de Associação Genética , Humanos , Leucemia Plasmocitária/diagnóstico , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/diagnóstico , Mutação
13.
Noncoding RNA ; 5(1)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654527

RESUMO

Intensive research has been undertaken during the last decade to identify the implication of microRNAs (miRNAs) in the pathogenesis of multiple myeloma (MM). The expression profiling of miRNAs in MM has provided relevant information, demonstrating different patterns of miRNA expression depending on the genetic abnormalities of MM and a key role of some miRNAs regulating critical genes associated with MM pathogenesis. However, the underlying causes of abnormal expression of miRNAs in myeloma cells remain mainly elusive. The final expression of the mature miRNAs is subject to multiple regulation mechanisms, such as copy number alterations, CpG methylation or transcription factors, together with impairment in miRNA biogenesis and differences in availability of the mRNA target sequence. In this review, we summarize the available knowledge about the factors involved in the regulation of miRNA expression and functionality in MM.

14.
Bio Protoc ; 9(12): e3267, 2019 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-33654787

RESUMO

Protein analysis in bone marrow samples from patients with multiple myeloma (MM) has been limited by the low concentration of proteins obtained after CD138+ cell selection. A novel approach based on capillary nano-immunoassay could make it possible to quantify dozens of proteins from each CD138+ purified MM sample in an automated manner. Up to now, the knowledge of protein level in those cells was limited because a relatively small quantity of sample is available after the diagnostic procedure. Moreover, the sample often is required for nucleic acids analysis. We have developed the procedure for obtaining proteins from bone marrow samples preserved in RLT+ buffer, and we have successfully applied this approach for the quantification of proteins in the setting of patients with MM. Proteins are extracted from RLT+ buffer, the content is quantified by total protein assay with WES machine and finally, the particular protein expression level is evaluated using specific antibodies by capillary nano-immunoassay with WES machine. The present protocol enables us to quantify many proteins from a limited amount of sample, without losing the opportunity to obtain nucleic acids at the same time. Proteins are quantified automatically in an assay with a low probability of human errors, which makes it a useful tool for biomarkers development.

15.
Haematologica ; 103(5): 880-889, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29545347

RESUMO

Protein analysis in bone marrow samples from patients with multiple myeloma has been limited by the low concentration of proteins obtained after CD138+ cell selection. A novel approach based on capillary nano-immunoassay could make it possible to quantify dozens of proteins from each myeloma sample in an automated manner. Here we present a method for the accurate and robust quantification of the expression of multiple proteins extracted from CD138-purified multiple myeloma samples frozen in RLT Plus buffer, which is commonly used for nucleic acid preservation and isolation. Additionally, the biological and clinical value of this analysis for a panel of 12 proteins essential to the pathogenesis of multiple myeloma was evaluated in 63 patients with newly diagnosed multiple myeloma. The analysis of the prognostic impact of CRBN/Cereblon and IKZF1/Ikaros mRNA/protein showed that only the protein levels were able to predict progression-free survival of patients; mRNA levels were not associated with prognosis. Interestingly, high levels of Cereblon and Ikaros proteins were associated with longer progression-free survival only in patients who received immunomodulatory drugs and not in those treated with other drugs. In conclusion, the capillary nano-immunoassay platform provides a novel opportunity for automated quantification of the expression of more than 20 proteins in CD138+ primary multiple myeloma samples.


Assuntos
Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Imunoensaio/métodos , Mieloma Múltiplo/metabolismo , Nanotecnologia/métodos , RNA Mensageiro/genética , Sindecana-1/metabolismo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Prognóstico , Taxa de Sobrevida
16.
Haematologica ; 102(12): 2113-2124, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28860344

RESUMO

Kinesin spindle protein inhibition is known to be an effective therapeutic approach in several malignancies. Filanesib (ARRY-520), an inhibitor of this protein, has demonstrated activity in heavily pre-treated multiple myeloma patients. The aim of the work herein was to investigate the activity of filanesib in combination with pomalidomide plus dexamethasone backbone, and the mechanisms underlying the potential synergistic effect. The ability of filanesib to enhance the activity of pomalidomide plus dexamethasone was studied in several in vitro and in vivo models. Mechanisms of this synergistic combination were dissected by gene expression profiling, immunostaining, cell cycle and short interfering ribonucleic acid studies. Filanesib showed in vitro, ex vivo, and in vivo synergy with pomalidomide plus dexamethasone treatment. Importantly, the in vivo synergy observed in this combination was more evident in large, highly proliferative tumors, and was shown to be mediated by the impairment of mitosis transcriptional control, an increase in monopolar spindles, cell cycle arrest and the induction of apoptosis in cells in proliferative phases. In addition, the triple combination increased the activation of the proapoptotic protein BAX, which has previously been associated with sensitivity to filanesib, and could potentially be used as a predictive biomarker of response to this combination. Our results provide preclinical evidence for the potential benefit of the combination of filanesib with pomalidomide and dexamethasone, and supported the initiation of a recently activated trial being conducted by the Spanish Myeloma group which is investigating this combination in relapsed myeloma patients.


Assuntos
Dexametasona/uso terapêutico , Cinesinas/antagonistas & inibidores , Mieloma Múltiplo/tratamento farmacológico , Talidomida/análogos & derivados , Tiadiazóis/uso terapêutico , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Humanos , Camundongos , Talidomida/uso terapêutico , Resultado do Tratamento
17.
Clin Cancer Res ; 23(21): 6602-6615, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28790111

RESUMO

Purpose: The search for new drugs that control the continuous relapses of multiple myeloma is still required. Here, we report for the first time the potent antimyeloma activity of amiloride, an old potassium-sparing diuretic approved for the treatment of hypertension and edema due to heart failure.Experimental Design: Myeloma cell lines and primary samples were used to evaluate cytotoxicity of amiloride. In vivo studies were carried out in a xenograft mouse model. The mechanisms of action were investigated using RNA-Seq experiments, qRT-PCR, immunoblotting, and immunofluorescence assays.Results: Amiloride-induced apoptosis was observed in a broad panel of multiple myeloma cell lines and in a xenograft mouse model. Moreover, amiloride also had a synergistic effect when combined with dexamethasone, melphalan, lenalidomide, and pomalidomide. RNA-Seq experiments showed that amiloride not only significantly altered the level of transcript isoforms and alternative splicing events, but also deregulated the spliceosomal machinery. In addition, disruption of the splicing machinery in immunofluorescence studies was associated with the inhibition of myeloma cell viability after amiloride exposure. Although amiloride was able to induce apoptosis in myeloma cells lacking p53 expression, activation of p53 signaling was observed in wild-type and mutated TP53 cells after amiloride exposure. On the other hand, we did not find a significant systemic toxicity in mice treated with amiloride.Conclusions: Overall, our results demonstrate the antimyeloma activity of amiloride and provide a mechanistic rationale for its use as an alternative treatment option for relapsed multiple myeloma patients, especially those with 17p deletion or TP53 mutations that are resistant to current therapies. Clin Cancer Res; 23(21); 6602-15. ©2017 AACR.


Assuntos
Amilorida/administração & dosagem , Diuréticos/administração & dosagem , Sinergismo Farmacológico , Mieloma Múltiplo/tratamento farmacológico , Proteína Supressora de Tumor p53/genética , Amilorida/efeitos adversos , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Diuréticos/efeitos adversos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
18.
J Hematol Oncol ; 10(1): 127, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28633670

RESUMO

BACKGROUND: Despite recent advances in the treatment of multiple myeloma (MM), the prognosis of most patients remains poor, and resistance to traditional and new drugs frequently occurs. EDO-S101 is a novel therapeutic agent conceived as the fusion of a histone deacetylase inhibitor radical to bendamustine, with the aim of potentiating its alkylating activity. METHODS: The efficacy of EDO-S101 was evaluated in vitro, ex vivo and in vivo, alone, and in combination with standard anti-myeloma agents. The underlying mechanisms of action were also evaluated on MM cell lines, patient samples, and different murine models. RESULTS: EDO-S101 displayed potent activity in vitro in MM cell lines (IC50 1.6-4.8 µM) and ex vivo in cells isolated from MM patients, which was higher than that of bendamustine and independent of the p53 status and previous melphalan resistance. This activity was confirmed in vivo, in a CB17-SCID murine plasmacytoma model and in de novo Vk*MYC mice, leading to a significant survival improvement in both models. In addition, EDO-S101 was the only drug with single-agent activity in the multidrug resistant Vk12653 murine model. Attending to its mechanism of action, the molecule showed both, a HDACi effect (demonstrated by α-tubulin and histone hyperacetylation) and a DNA-damaging effect (shown by an increase in γH2AX); the latter being again clearly more potent than that of bendamustine. Using a reporter plasmid integrated into the genome of some MM cell lines, we demonstrate that, apart from inducing a potent DNA damage, EDO-S101 specifically inhibited the double strand break repair by the homologous recombination pathway. Moreover, EDO-S101 treatment reduced the recruitment of repair proteins such as RAD51 to DNA-damage sites identified as γH2AX foci. Finally, EDO-S101 preclinically synergized with bortezomib, both in vitro and in vivo. CONCLUSION: These findings provide rationale for the clinical investigation of EDO-S101 in MM, either as a single agent or in combination with other anti-MM drugs, particularly proteasome inhibitors.


Assuntos
Antineoplásicos/uso terapêutico , Benzimidazóis/uso terapêutico , Dano ao DNA/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Inibidores de Histona Desacetilases/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cloridrato de Bendamustina/análogos & derivados , Cloridrato de Bendamustina/farmacologia , Cloridrato de Bendamustina/uso terapêutico , Benzimidazóis/química , Benzimidazóis/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Inibidores de Histona Desacetilases/química , Inibidores de Histona Desacetilases/farmacologia , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos SCID , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia
19.
J Hematol Oncol ; 10(1): 92, 2017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28420429

RESUMO

BACKGROUND: The B cell maturation process involves multiple steps, which are controlled by relevant pathways and transcription factors. The understanding of the final stages of plasma cell (PC) differentiation could provide new insights for therapeutic strategies in multiple myeloma (MM). Here, we explore the role of DEPTOR, an mTOR inhibitor, in the terminal differentiation of myeloma cells, and its potential impact on patient survival. METHODS: The expression level of DEPTOR in MM cell lines and B cell populations was measured by real-time RT-PCR, and/or Western blot analysis. DEPTOR protein level in MM patients was quantified by capillary electrophoresis immunoassay. RNA interference was used to downregulate DEPTOR in MM cell lines. RESULTS: DEPTOR knockdown in H929 and MM1S cell lines induced dedifferentiation of myeloma cells, as demonstrated by the upregulation of PAX5 and BCL6, the downregulation of IRF4, and a clear reduction in cell size and endoplasmic reticulum mass. This effect seemed to be independent of mTOR signaling, since mTOR substrates were not affected by DEPTOR knockdown. Additionally, the potential for DEPTOR to be deregulated in MM by particular miRNAs was investigated. The ectopic expression of miR-135b and miR-642a in myeloma cell lines substantially diminished DEPTOR protein levels, and caused dedifferentiation of myeloma cells. Interestingly, the level of expression of DEPTOR protein in myeloma patients was highly variable, the highest levels being associated with longer progression-free survival. CONCLUSIONS: Our results demonstrate for the first time that DEPTOR expression is required to maintain myeloma cell differentiation and that high level of its expression are associated with better outcome. Primary samples used in this study correspond to patients entered into GEM2010 trial (registered at www.clinicaltrials.gov as #NCT01237249, 4 November 2010).


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Mieloma Múltiplo/patologia , Plasmócitos/patologia , Linfócitos B , Desdiferenciação Celular , Diferenciação Celular , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/análise , Prognóstico , Células Tumorais Cultivadas
20.
Int J Mol Sci ; 17(12)2016 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-27916892

RESUMO

The p53 pathway is inactivated in the majority of human cancers. Although this perturbation frequently occurs through the mutation or deletion of p53 itself, there are other mechanisms that can attenuate the pathway and contribute to tumorigenesis. For example, overexpression of important p53 negative regulators, such as murine double minute 2 (MDM2) or murine double minute 4 (MDM4), epigenetic deregulation, or even alterations in TP53 mRNA splicing. In this work, we will review the different mechanisms of p53 pathway inhibition in cancer with special focus on multiple myeloma (MM), the second most common hematological malignancy, with low incidence of p53 mutations/deletions but growing evidence of indirect p53 pathway deregulation. Translational implications for MM and cancer prognosis and treatment are also reviewed.


Assuntos
Mieloma Múltiplo/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Animais , Epigênese Genética/genética , Humanos , Mieloma Múltiplo/genética , Mutação , Proteínas Proto-Oncogênicas c-mdm2/genética , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...