Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 192: 115054, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37285610

RESUMO

The release of tritium (3H) to the ocean is planned on the coastal environment in the Fukushima coastal region from Spring or Summer of 2023. Before its release, we evaluate the effect of 3H discharges from the port of Fukushima Daiichi and rivers in the Fukushima coastal region using a three-dimensional hydrodynamic model (3D-Sea-SPEC). The simulation results showed that discharges from the port of Fukushima Daiichi dominantly affected the 3H concentrations in monitoring points within approximately 1 km. Moreover, the results indicate that the effect of riverine 3H discharge was limited around the river mouth under base flow conditions. However, its impact on the Fukushima coastal regions under storm flow conditions was found, and the 3H concentrations in seawater in the Fukushima coastal region were formed around 0.1 Bq/L (mean 3H concentrations in seawater in the Fukushima coastal region) in the near shore.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Poluentes Radioativos da Água/análise , Radioisótopos de Césio/análise , Rios , Japão
2.
Mar Pollut Bull ; 178: 113597, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35366555

RESUMO

It is essential to evaluate secondary migration caused by riverine input and resuspension from seabed sediments to estimate the future distribution of radioactive cesium (137Cs) in the coastal area off Fukushima Prefecture. In particular, the inflow from rivers cannot be ignored because most of the 137Cs inflow from rivers is deposited on the coast without elute into seawater. Two mooring systems were installed near the Ukedo River's mouth (Fukushima Prefecture) from February 2017 to February 2018. The first contained a sediment trap system, collecting sinking particles during the period. The second comprised a turbidity sensor and a current sensor. The contribution of resuspension and inflow from the river to the mass flux was quantitatively evaluated using multiple regression equations. The results showed that resuspension caused 79%-83% of secondary 137Cs migration in nearshore areas, whereas the influence of riverine 137Cs input on the sediment was only 7% per year.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Radioatividade , Poluentes Radioativos da Água , Sedimentos Geológicos , Poluentes Radioativos da Água/análise
3.
Sci Rep ; 11(1): 23175, 2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34848808

RESUMO

Large quantities of volatile radionuclides were released into the atmosphere and the hydrosphere following the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March, 2011. Monitoring of radiocesium in sediment is important for evaluating the behavior of radiocesium in the environment and its effect on aquatic organisms. In this study, the radiocesium distribution in the surface sediment around the FDNPP was visualized as a radiocesium concentration map using periodical survey data from a towed gamma-ray detection system. The uncertainty of the radiocesium map was evaluated via comparison with a large amount of sediment core sample data. The characteristics of the radiocesium distribution were examined considering the seafloor topography and a geological map, which were obtained via acoustic wave survey. The characteristics of the formation of 137Cs anomaly at the estuaries were analyzed using a contour map of 137Cs concentration combined with water depth. Validation of the created map showed that it was comparable with actual sediment core samples. The map generated using the towed radiation survey depicted the 137Cs concentration distribution as the position resolution of a 1 km mesh. Finally, the 137Cs concentration decreased with time in consideration of such uncertainty.

4.
Environ Sci Technol ; 54(21): 13778-13785, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33073983

RESUMO

Concentrations of 137Cs in seawater, seabed sediment, and pore water collected from the area around Fukushima were investigated from 2015 to 2018, and the potential of coastal sediments to supply radiocesium to the bottom environment was evaluated. The 137Cs concentration in the pore water ranged from 33 to 1934 mBq L-1 and was 10-40 times higher than that in the overlying water (seawater overlying within 30 cm on the seabed). At most stations, the 137Cs concentrations in the overlying water and the pore water were approximately proportional to those in the sediment. The conditional partition coefficient between pore water and sediment was [0.9-14] × 102 L kg-1, independent of the year of sampling. These results indicated that an equilibrium of 137Cs between pore water and sediment has been established in a relatively short period, and 137Cs in the pore water is gradually exported to seawater near the seabed. A simple box model estimation based on these results showed that 137Cs in the sediment decreased by about 6% per year by desorption/diffusion of 137Cs from the seabed.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Radioisótopos de Césio/análise , Japão , Água do Mar , Água , Poluentes Radioativos da Água/análise
5.
J Environ Radioact ; 220-221: 106294, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32560884

RESUMO

Radiocesium that originated from the Fukushima Daiichi Nuclear Power Plant accident was deposited on the ground surface and has been transported via fluvial discharge, primarily in the form of particulates, to downstream areas and eventually to the ocean. During transportation, some of the radiocesium accumulated on the riverbed. In this study, we quantified the radiocesium deposition on the riverbed in the Odaka River estuary and investigated the radiocesium sedimentation process of the river bottom. Our results show that the radiocesium inventory in the seawater intrusion area is larger than those in the freshwater and marine parts of the estuary. Moreover, the particle-size distribution in the seawater intrusion area shows a high proportion of silt and clay particles compared with the distribution in other areas. The increased radiocesium inventory in this area is attributed to the sedimentation of fine particles caused by hydrodynamic factors (negligible velocity of the river flow) rather than flocculation factor by salinity variation.


Assuntos
Estuários , Acidente Nuclear de Fukushima , Monitoramento de Radiação , Radioisótopos de Césio , Sedimentos Geológicos , Japão , Poluentes Radioativos do Solo , Poluentes Radioativos da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA