Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(14): 10746-10756, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38516878

RESUMO

One key process involving single atom catalysts (SACs) is the electroreduction of CO2 to fuels. The chemistry of SACs differs largely from that of extended catalytic surfaces, presenting an opportunity to improve the ability to activate very stable molecules, such as CO2. In this work, we performed a density functional theory (DFT) study of CO2 activation on a series of SACs, focusing on the role played by the adopted functional in activity predictions. The role of the exchange-correlation functional has been widely investigated in heterogenous catalysts, but it is less explored in SACs. We tested the widely used PBE and the PBE+U corrected functionals against the more robust hybrid PBE0 functional. The results show that PBE is reliable if one is interested in qualitative predictions, but it leads to some inaccuracies in other cases. A possible way to attenuate this effect is by adopting the PBE+U framework, as it gives results that are very similar to PBE0 at an acceptable computational cost. The results of this study further underline the importance of the computational framework adopted in predicting the activity of SACs. The work suggests that one needs to go beyond PBE for quantitative estimates, an important consideration when performing screening and high-throughput calculations.

2.
Phys Chem Chem Phys ; 26(5): 4579-4588, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38247575

RESUMO

Employing first-principles calculations based on density functional theory, this work examines the activity of 3d transition metal-doped stanene for electro-catalytic CO2 reduction through the first two electron transfer steps to CO. Our results related to CO2 activation, the first and a crucial step of the reduction process revealed that, among the entire 3d transition metal row studied, only Ti- and Fe-doped stanene can bind and significantly activate the CO2 molecule, while the rest of the TM single atoms are inert in activating the molecule. The activation of the CO2 molecule on Ti- and Fe-doped stanene has been observed in the presence of water as well. In addition, the formation of OCHO has been observed to be energetically preferred over COOH formation as a reaction intermediate, indicating the preference for the formate path of the reduction reaction. Furthermore, despite the strong adsorption of H2O on the catalyst surface, the presence of water seems to enhance CO2 adsorption on the catalysts, contrary to what has been observed recently in graphene-based catalysts. Finally, our difference charge density and the Bader charge calculations reveal that the ability of Ti- and Fe-doped stanene in activating the CO2 molecule and their potential catalytic activity for CO2 reduction is to be attributed to the charge transfer between the catalyst and the molecule, providing new insights into the rational design of 2D catalysts beyond graphene.

3.
Sci Rep ; 9(1): 12593, 2019 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-31467380

RESUMO

Transition metals (TMs) implanted in oxides with rock-salt crystal structures (for example MgO and BaO) are assumed to substitute cations (Mg in case of MgO) from the lattice sites. We show that not all implanted TMs substitute cations but can be stable in interstitial sites as well. Stability of TM (Sc-Zn) dopants in various charge states in MgO and BaO has been investigated in the framework of density functional theory. We propose an effective way to calculate stability of implanted metals that let us predict site preference (interstitial or substitution) of the dopant in the host. We find that two factors govern the preference for an interstitial site: (i) relative ionic radius and (ii) relative oxygen affinity of cation and the TM dopants. If the radius of the cation is much larger than TM dopant, as in BaO, TM atoms always sit at interstitial sites. On the other hand, if the radius of the cation is comparable to that of the dopant TM, as in case of MgO, the transition of the preferred defect site, from substituting lattice Mg atom (Sc to Mn) to occupying interstitial site (Fe to Zn) is observed. This transition can be attributed to the change in the oxygen affinity of the TM atoms from Sc to Zn. Our results also explain experiments on Ni and Fe atoms implanted in MgO. TM dopants at interstitial sites could show substantially different and new properties from substitutionally doped stable compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA