Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mater Horiz ; 8(6): 1735-1743, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34846503

RESUMO

Distortion of the density of states induced by specific impurities, a mechanism known as resonant level (RL), is an efficient strategy to enhance the thermoelectric performances of metals and semiconductors. So far, experimental signatures identifying the resonant nature of an impurity have relied on the so-called Ioffe-Pisarenko plot that enables visualizing the induced thermopower enhancement at specific carrier concentrations. However, this method cannot solely discern RL from other possible band-structure-related sources of thermopower enhancement such as band-shape modifications or band convergence. An independent method of resolving this problem is proposed here. A detailed theoretical and experimental analysis of the low-temperature electrical resistivity ρ0 and carrier mobility µ0 of the resonant-level system SnTe doped with In is presented as a function of the impurity concentration x. By comparing to non-resonant cases of SnTe doped with I, Mn, and Ga, we demonstrate that the construction of residual resistivity ρ0(x) and residual mobility µ0(x) plots allows to distinguish between resonant and non-resonant impurities, even when some of them induce similar thermopower enhancements. This methodology is further confirmed by analyses performed for Na- and Tl-doped PbTe, illustrating how the combination of transport measurements at low temperatures can be used to determine the resonant nature of an impurity.

2.
Phys Chem Chem Phys ; 22(23): 13008-13016, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32478345

RESUMO

Rutile is the most common and stable polymorph form of titanium oxide TiO2 at all temperatures. The doping of rutile TiO2 with a small amount of niobium is reknown for being responsible for a large increase of the electrical conductivity by several orders of magnitude, broadening its technological interest towards new emerging fields such as the thermoelectric conversion of waste heat. The electronic conduction has been found to be of a polaronic nature with strongly localized charges around the Ti3+ centers while, on the other side, the relatively high value of the thermal conductivity implies the existence of lattice heat carriers, i.e. phonons, with large mean free paths which makes the nanostructuration relevant for optimizing the thermoelectric efficiency. Here, the use of a high-pressure and high-temperature sintering technique has allowed to vary the grain size in rutile TiO2 pellets from 300 to 170 nm, leading to a significant reduction of the lattice thermal conductivity. The thermoelectric properties (electrical conductivity, Seebeck coefficient and thermal conductivity) of Nb-doped rutile nanostructured ceramics, namely NbxTi1-xO2 with x varying from 1 to 5%, are reported from room temperature to ∼900 K. With the incorporation of Nb, an optimum in the thermoelectric properties together with an anomaly on the tetragonal lattice constant c are observed for a concentration of ∼2.85%, which might be the fingerprint of the formation of short Nb dimers.

3.
RSC Adv ; 10(10): 5996-6005, 2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-35497442

RESUMO

Because the binary chalcogenide SnTe is an interesting Pb-free alternative to the state-of-the-art thermoelectric material PbTe, significant efforts were devoted to the optimization of its thermoelectric properties over the last few years. Here, we show that saturation-annealing treatments performed at 823, 873 or 973 K under Sn-rich conditions provide a successful strategy to prepare polycrystalline samples with a controlled concentration of Sn vacancies. Both scanning transmission electron microscopy and Mössbauer spectroscopy demonstrate the absence of Sn-rich areas at the grain boundaries in the saturation-annealed samples. Transport property measurements, performed over a wide range of temperatures (5-800 K), show that this technique enables achieving thermoelectric performances at 800 K similar to those obtained using Sn self-compensation. The three saturation annealing temperatures result in comparable transport properties across the entire temperature range due to similar hole concentrations ranging between 1.0 and 1.5 × 1020 cm-3 at 300 K. As equally observed in samples prepared by other synthetic routes, the temperature dependence of the Hall mobility evidences that charge transport is strongly affected by point-defect scattering caused by the random distribution of Sn vacancies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...