Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 371(1691): 20150226, 2016 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-26977066

RESUMO

Theoretical predictions for biodiversity patterns are typically derived under the assumption that ecological systems have reached a dynamic equilibrium. Yet, there is increasing evidence that various aspects of ecological systems, including (but not limited to) species richness, are not at equilibrium. Here, we use simulations to analyse how biodiversity patterns unfold through time. In particular, we focus on the relative time required for various biodiversity patterns (macroecological or phylogenetic) to reach equilibrium. We simulate spatially explicit metacommunities according to the Neutral Theory of Biodiversity (NTB) under three modes of speciation, which differ in how evenly a parent species is split between its two daughter species. We find that species richness stabilizes first, followed by species area relationships (SAR) and finally species abundance distributions (SAD). The difference in timing of equilibrium between these different macroecological patterns is the largest when the split of individuals between sibling species at speciation is the most uneven. Phylogenetic patterns of biodiversity take even longer to stabilize (tens to hundreds of times longer than species richness) so that equilibrium predictions from neutral theory for these patterns are unlikely to be relevant. Our results suggest that it may be unwise to assume that biodiversity patterns are at equilibrium and provide a first step in studying how these patterns unfold through time.


Assuntos
Biodiversidade , Evolução Biológica , Modelos Biológicos , Distribuição Animal , Animais , Simulação por Computador , Especiação Genética , Fatores de Tempo
2.
Science ; 338(6113): 1481-4, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23239740

RESUMO

Most eukaryotic organisms are arthropods. Yet, their diversity in rich terrestrial ecosystems is still unknown. Here we produce tangible estimates of the total species richness of arthropods in a tropical rainforest. Using a comprehensive range of structured protocols, we sampled the phylogenetic breadth of arthropod taxa from the soil to the forest canopy in the San Lorenzo forest, Panama. We collected 6144 arthropod species from 0.48 hectare and extrapolated total species richness to larger areas on the basis of competing models. The whole 6000-hectare forest reserve most likely sustains 25,000 arthropod species. Notably, just 1 hectare of rainforest yields >60% of the arthropod biodiversity held in the wider landscape. Models based on plant diversity fitted the accumulated species richness of both herbivore and nonherbivore taxa exceptionally well. This lends credence to global estimates of arthropod biodiversity developed from plant models.


Assuntos
Artrópodes/anatomia & histologia , Artrópodes/classificação , Biodiversidade , Animais , Herbivoria , Chuva , Árvores , Clima Tropical
3.
Mol Ecol ; 21(16): 4137-50, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22693963

RESUMO

We empirically tested the long-standing hypothesis of codivergence of New World arenaviruses (NWA) with their hosts. We constructed phylogenies for NWA and all known hosts and used them in reconciliation analyses. We also constructed a phylogenetic tree of all Sigmodontinae and Neotominae rodents and tested whether viral-host associations were phylogenetically clustered. We determined host geographical overlap to determine to what extent opportunity to switch hosts was limited by host relatedness or physical proximity. With the exception of viruses from North America, no phylogenetically codivergent pattern between NWA and their hosts was found. We found that different virus clades were clustered differently and that Clade B with members pathogenic to humans was randomly distributed across the rodent phylogeny. Furthermore, viral relatedness within Clade B was significantly explained by the geographic overlap of their hosts' ranges rather than host relatedness, indicating that they are capable of host switching opportunistically. This has important bearings on their potential to become panzootic. Together, these analyses suggest that NWA have not codiverged with their hosts and instead have evolved predominantly via host switching.


Assuntos
Arenavirus do Novo Mundo/genética , Interações Hospedeiro-Patógeno , Filogenia , Roedores/virologia , Animais , Arenavirus do Novo Mundo/patogenicidade , Análise por Conglomerados , Roedores/genética
4.
Conserv Biol ; 22(6): 1552-63, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18717696

RESUMO

Searching for indicator taxa representative of diverse assemblages, such as arthropods, is an important objective of many conservation studies. We evaluated the impacts of a wide gradient of disturbance in Gabon on a range of arthropod assemblages representing different feeding guilds. We examined 4 x 10(5) arthropod individuals from which 21 focal taxa were separated into 1534 morphospecies. Replication included the understory of 3 sites in each of 4 different stages of forest succession and land use (i.e., habitats) after logging (old and young forests, savanna, and gardens). We used 3 complementary sampling methods to survey sites throughout the year. Overall differences in arthropod abundance and diversity were greatest between forest and open habitats, and cleared forest invaded by savanna had the lowest abundance and diversity. The magnitude of faunal differences was much smaller between old and young forests. When considered at this local scale, anthropogenic modification of habitats did not result in a monotonous decline of diversity because many herbivore pests and their associated predators and parasitoids were abundant and diverse in gardens, where plant productivity was kept artificially high year-round through watering and crop rotation. We used a variety of response variables to measure the strength of correlations across survey locations among focal taxa. These could be ranked as follows in terms of decreasing number of significant correlations: species turnover > abundance > observed species richness > estimated species richness > percentage of site-specific species. The number of significant correlations was generally low and apparently unrelated to taxonomy or guild structure. Our results emphasize the value of reporting species turnover in conservation studies, as opposed to simply measuring species richness, and that the search for indicator taxa is elusive in the tropics. One promising alternative might be to consider "predictor sets" of a small number of taxa representative of different functional groups, as identified in our study.


Assuntos
Artrópodes/fisiologia , Conservação dos Recursos Naturais/estatística & dados numéricos , Demografia , Ecossistema , Animais , Conservação dos Recursos Naturais/métodos , Gabão , Modelos Teóricos , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA