Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Am Chem Soc ; 144(31): 14121-14131, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35895903

RESUMO

Ion transport in solid-state cathode materials prescribes a fundamental limit to the rates batteries can operate; therefore, an accurate understanding of ion transport is a critical missing piece to enable new battery technologies, such as magnesium batteries. Based on our conventional understanding of lithium-ion materials, MgCr2O4 is a promising magnesium-ion cathode material given its high capacity, high voltage against an Mg anode, and acceptable computed diffusion barriers. Electrochemical examinations of MgCr2O4, however, reveal significant energetic limitations. Motivated by these disparate observations; herein, we examine long-range ion transport by electrically polarizing dense pellets of MgCr2O4. Our conventional understanding of ion transport in battery cathode materials, e.g., Nernst-Einstein conduction, cannot explain the measured response since it neglects frictional interactions between mobile species and their nonideal free energies. We propose an extended theory that incorporates these interactions and reduces to the Nernst-Einstein conduction under dilute conditions. This theory describes the measured response, and we report the first study of long-range ion transport behavior in MgCr2O4. We conclusively show that the Mg chemical diffusivity is comparable to lithium-ion electrode materials, whereas the total conductivity is rate-limiting. Given these differences, energy storage in MgCr2O4 is limited by particle-scale voltage drops, unlike lithium-ion particles that are limited by concentration gradients. Future materials design efforts should consider the interspecies interactions described in this extended theory, particularly with respect to multivalent-ion systems and their resultant effects on continuum transport properties.

2.
ACS Appl Mater Interfaces ; 12(27): 30438-30448, 2020 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-32551528

RESUMO

Existing in operando methods for detection of plated lithium can only detect the presence of plating after the charge is complete and irreversible damage has already occurred. In this work, the characteristic potential minimum on the graphite electrode during high rate lithiation is proposed and assessed as an in operando technique for detecting the onset of lithium plating. While other studies have shown that rapid self-heating of a cell can cause this type of "voltage overshoot", we confirm through temperature-controlled coin cell experiments that such a voltage profile can also be caused by the occurrence of severe lithium plating. In cells which demonstrated voltage overshoot, macroscopically observable lithium plating films were present on the graphite electrodes upon disassembly, resulting in very poor single-cycle Coulombic efficiency. The significance of this voltage characteristic is confirmed through direct observation of the onset of lithium plating in an in situ optical microscopy cell. We observe that the growth of large metallic lithium deposits within the porous electrode structure can cause swelling and cracking of the graphite electrode, suggesting loss of active material due to mechanical electrode degradation as an important consequence of severe lithium plating.

3.
ACS Appl Mater Interfaces ; 11(22): 19933-19942, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31066541

RESUMO

The charge/discharge capabilities of Li-ion cathodes are influenced by the meso-scale geometry, transport properties, and morphological parameters of the constituent phases in the cathode: active material, binder, conductive additive, and pore. Electrode processing influences the structure and attendant properties of these constituents. Thus, performance of the battery can be enhanced by correlating various electrode processing techniques with the charge/discharge behavior in the lithium-ion cathodes. X-ray microtomography was used to image samples obtained from pristine Li(Ni1/3Mn1/3Co1/3)O2 (NMC) cathodes subjected to distinct processing approaches. Two sample preparation approaches were applied to the samples prior to microtomography. Casting the samples in epoxy yielded only the cathode active material domain. Encapsulating the sample with Kapton tape yielded phase contrast data that permitted segmentation of the active material and combined carbon/binder and pore regions. Geometrical and morphological details of the active material and the secondary phases were characterized and compared between the varied processing approaches. Calendered and ball-milled samples exhibited distinct differences in both geometry and morphology. Drying modes demonstrated variation in the distribution of the secondary and pore phases. Applying phase contrast capabilities, the processing-morphology relationship can be better understood to enhance overall battery performance across multiple scales.

4.
ACS Appl Mater Interfaces ; 11(14): 13334-13342, 2019 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-30892862

RESUMO

Next-generation Li-ion battery technology awaits materials that not only store more electrochemical energy at finite rates but also exhibit superior control over side reactions and better thermal stability. Herein, we hypothesize that designing an appropriate particle morphology can provide a well-balanced set of physicochemical interactions. Given the anode-centric nature of primary degradation modes, we investigate three different carbon particles-commercial graphite, spherical carbon, and spiky carbon-and analyze the correlation between particle geometry and functionality. Intercalation dynamics, side reaction rates, self-heating, and thermal abuse behavior have been studied. It is revealed that the spherical particle outperforms an irregular one (commercial graphite) under thermal abuse conditions, as it eliminates unstructured inhomogeneities. A spiky particle with ordered protrusions exhibits smaller intercalation resistance and attenuated side reactions, thus outlining the benefits of controlled stochasticity. Such findings emphasize the importance of tailoring particle morphology to proffer selectivity among multimodal interactions.

5.
Phys Chem Chem Phys ; 21(7): 3805-3813, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30357168

RESUMO

In porous intercalation electrodes, coupled charge and species transport interactions take place at the pore-scale, while often observations are made at the electrode-scale. The physical manifestation of these interactions from pore- to electrode-scale is poorly understood. Moreover, the spatial arrangement of the constituent material phases forming a porous electrode significantly affects the multi-modal electrochemical and transport interplay. In this study, the relation between the electrode specification, resultant porous microstructure, and electrode-scale resistances is delineated based on a virtual deconvolution of the impedance response. Relevant short- and long-range interactions are identified. Without altering the microstructural arrangement, if the electrode thickness is increased, the resistances do not scale linearly with thickness. This dependence is also probed to identify the fundamental origins of thick electrode limitations.

6.
ACS Appl Mater Interfaces ; 10(34): 28644-28655, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30074772

RESUMO

Thermo-electrochemical extremes continue to remain a challenge for lithium-ion batteries. Contrary to the conventional approach, we propose herein that the electrochemistry-coupled and microstructure-mediated cross talk between the positive and negative electrodes ultimately dictates the off-equilibrium-coupled processes, such as heat generation and the propensity for lithium plating. The active particle morphological differences between the electrode couple foster a thermo-electrochemical hysteresis, where the difference in heat generation rates changes the electrochemical response. The intrinsic asymmetry in electrode microstructural complexations leads to thermo-electrochemical consequences, such as cathode-dependent thermal excursion and co-dependent lithium plating otherwise believed to be anode-dependent.

7.
ACS Appl Mater Interfaces ; 10(7): 6317-6326, 2018 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-29328624

RESUMO

Lithium-ion battery electrodes exhibit complex interplay among multiple electrochemically coupled transport processes, which rely on the underlying functionality and relative arrangement of different constituent phases. The electrochemically inactive solid phases (e.g., conductive additive and binder, referred to as the secondary phase), while beneficial for improved electronic conductivity and mechanical integrity, may partially block the electrochemically active sites and introduce additional transport resistances in the pore (electrolyte) phase. In this work, the role of mesoscale interactions and inherent stochasticity in porous electrodes is elucidated in the context of short-range (interface) and long-range (transport) characteristics. The electrode microstructure significantly affects kinetically and transport-limiting scenarios and thereby the cell performance. The secondary-phase morphology is also found to strongly influence the microstructure-transport-kinetics interactions. Apropos, strategies have been proposed for performance improvement via electrode microstructural modifications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...