Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Gene ; 850: 146917, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36174905

RESUMO

Among bioluminescent beetles of the Elateroidea superfamily, Phengodidae is the third largest family, with 244 bioluminescent species distributed only in the Americas, but is still the least studied from the phylogenetic and evolutionary points of view. The railroad worm Phrixothrix hirtus is an essential biological model and symbolic species due to its bicolor bioluminescence, being the only organism that produces true red light among bioluminescent terrestrial species. Here, we performed partial genome assembly of P. hirtus, combining short and long reads generated with Illumina sequencing, providing the first source of genomic information and a framework for comparative analyses of the bioluminescent system in Elateroidea. This is the largest genome described in the Elateroidea superfamily, with an estimated size of ∼3.4 Gb, displaying 32 % GC content, and 67 % transposable elements. Comparative genomic analyses showed a positive selection of genes and gene family expansion events of growth and morphogenesis gene products, which could be associated with the atypical anatomical development and morphogenesis found in paedomorphic females and underdeveloped males. We also observed gene family expansion among distinct odorant-binding receptors, which could be associated with the pheromone communication system typical of these beetles, and retrotransposable elements. Common genes putatively regulating bioluminescence production and control, including two luciferase genes corresponding to lateral lanterns green-emitting and head lanterns red-emitting luciferases with 7 exons and 6 introns, and genes potentially involved in luciferin biosynthesis were found, indicating that there are no clear differences about the presence or absence of gene families associated with bioluminescence in Elateroidea.


Assuntos
Besouros , Ferrovias , Animais , Feminino , Filogenia , Elementos de DNA Transponíveis , Odorantes , Besouros/genética , Besouros/metabolismo , Luciferases/metabolismo , Morfogênese , Feromônios
2.
Sci Rep ; 9(1): 13015, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31506523

RESUMO

The fireworms Odontosyllis spp. are globally distributed and well-known for their characteristic and fascinating mating behavior, with secreted mucus emitting bluish-green light. However, knowledge about the molecules involved in the light emission are still scarce. The fireworms are believed to emit light with a luciferin-luciferase reaction, but biochemical evidence of the luciferase is established for only one species living in Japan and no information is available for its luciferin structure. In this study, we identified a luciferase gene from a related Puerto Rican fireworm. We identified eight luciferase-like genes in this Puerto Rican fireworm, finding amino acid identities between Japanese and Puerto Rican luciferase-like genes to be less than 60%. We confirmed cross reactivity of extracts of the Japanese fireworm luciferin with a recombinant Puerto Rican luciferase (PR1). The emission spectrum of recombinant PR1 was similar to the crude extract of the native luciferase, suggesting that PR1 is a functional luciferase of this Puerto Rican fireworm. Our results indicate that the molecular mechanism of luminescence is widely conserved among fireworms.


Assuntos
Luciferases/metabolismo , Luminescência , Poliquetos/enzimologia , Poliquetos/genética , Proteínas Recombinantes/metabolismo , Sequência de Aminoácidos , Animais , Japão , Luciferases/genética , Poliquetos/metabolismo , Porto Rico , Proteínas Recombinantes/genética , Homologia de Sequência
3.
Photochem Photobiol Sci ; 18(5): 1212-1217, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-30834414

RESUMO

Bioluminescence is widely used in biosensors. Firefly luciferase-based bioluminescent sensors are among the most popular ones. Firefly luciferases are pH-sensitive, displaying a large red shift at acidic pH, a property that has been considered undesirable for most applications. Currently, biosensors that can detect intracellular pH are in demand, and some fluorescent biosensors are available. However, pH sensors using bioluminescence have not been used yet. Thus, we decided to harness a firefly luciferase to measure the intracellular pH in mammalian cells. For this purpose, we engineered the luciferase derived from Macrolampis sp2 firefly to localize it on the cytosol or nucleus, in order to observe pH variation in these compartments during biological activities. We first calibrated the emission ratios (R = Igreen/Ired) at different pH values. As expected, we observed a red shift of light emission under acidic conditions when the cells were subjected to different pH conditions in the presence of the K+/H+ ionophore, nigericin. Based on these results, we concluded that this firefly luciferase can be used as a diagnostic tool for measuring the intracellular pH variation in pathogenic cells or in cells during apoptosis. This is the first example of real time-monitoring of pH change using color tuning luciferase.


Assuntos
Técnicas Biossensoriais , Luciferases de Vaga-Lume/metabolismo , Medições Luminescentes , Organelas/metabolismo , Animais , Células COS , Chlorocebus aethiops , Vaga-Lumes , Concentração de Íons de Hidrogênio , Organelas/química
4.
Mitochondrial DNA A DNA Mapp Seq Anal ; 28(5): 671-680, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-27159725

RESUMO

The control region (CR) or A + T-rich region in Coleoptera mt genome is poorly characterized, including the Elateroidea bioluminescent species. Here, we provided the first attempt to characterize and compare the structure and organization of the CR of different species within Elateridae. We also revisited some sequenced Coleoptera CR and observed consensus T-stretches, non-conserved sequences near the stem-loop and unusual inner tRNAs-like sequences. All these features are probably involved in the replication start of the mt genome. The phylogenetic relationships in Elateridae bioluminescent groups using partial sequence of CR showed the monophyly of Pyrearinus pumilus group and Pyrearinus as a polyphyletic genus, corroborating our previous results. The wider genetic variation obtained by CR analysis could separate two different lineages that occur within P. termitilluminans populations. In Elateridae, the CR exhibited high polymorphism within and between populations, which was also observed in other Coleoptera species, suggesting that the CR could be described as a suitable molecular marker to be applied in phylogenetic and phylogeographic studies.


Assuntos
Besouros/classificação , DNA Mitocondrial/química , Mitocôndrias/genética , Análise de Sequência de DNA/métodos , Animais , Sequência de Bases , Besouros/genética , Sequência Conservada , DNA Mitocondrial/genética , Evolução Molecular , Variação Genética , Filogenia , Filogeografia
5.
Gene ; 586(2): 254-62, 2016 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-27060405

RESUMO

Mitochondrial genome organization in the Elateroidea superfamily (Coleoptera), which include the main families of bioluminescent beetles, has been poorly studied and lacking information about Phengodidae family. We sequenced the mitochondrial genomes of Neotropical Lampyridae (Bicellonycha lividipennis), Phengodidae (Brasilocerus sp.2 and Phrixothrix hirtus) and Elateridae (Pyrearinus termitilluminans, Hapsodrilus ignifer and Teslasena femoralis). All species had a typical insect mitochondrial genome except for the following: in the elaterid T. femoralis genome there is a non-coding region between NADH2 and tRNA-Trp; in the phengodids Brasilocerus sp.2 and P. hirtus genomes we did not find the tRNA-Ile and tRNA-Gln. The P. hirtus genome showed a ~1.6kb non-coding region, the rearrangement of tRNA-Tyr, a new tRNA-Leu copy, and several regions with higher AT contents. Phylogenetics analysis using Bayesian and ML models indicated that the Phengodidae+Rhagophthalmidae are closely related to Lampyridae family, and included Drilus flavescens (Drilidae) as an internal clade within Elateridae. This is the first report that compares the mitochondrial genomes organization of the three main families of bioluminescent Elateroidea, including the first Neotropical Lampyridae and Phengodidae. The losses of tRNAs, and translocation and duplication events found in Phengodidae mt genomes, mainly in P. hirtus, may indicate different evolutionary rates in these mitochondrial genomes. The mitophylogenomics analysis indicates the monophyly of the three bioluminescent families and a closer relationship between Lampyridae and Phengodidae/Rhagophthalmidae, in contrast with previous molecular analysis.


Assuntos
Besouros/genética , Genoma Mitocondrial , Animais , Besouros/classificação , Genes Mitocondriais , Luminescência , Filogenia , RNA de Transferência/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA