Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 88(9): 093502, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964174

RESUMO

After several experimental campaigns in the Kyushu University Experiment with Steady-state Spherical Tokamak (QUEST), the originally stainless steel plasma-facing wall (PFW) becomes completely covered with a deposited film composed of mixture materials, such as iron, chromium, carbon, and tungsten. In this work, an innovative colorimetry-based method was developed to measure the thickness of the deposited film on the actual QUEST wall. Because the optical constants of the deposited film on the PFW were position-dependent and the extinction coefficient k1 was about 1.0-2.0, which made the probing light not penetrate through some thick deposited films, the colorimetry method developed can only provide a rough value range of thickness of the metal-containing film deposited on the actual PFW in QUEST. However, the use of colorimetry is of great benefit to large-area inspections and to radioactive materials in future fusion devices that will be strictly prohibited from being taken out of the limited area.

2.
Rev Sci Instrum ; 86(3): 033508, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25832230

RESUMO

A plasma current up to 15 kA has been driven with outer ohmic heating (OH) coils in the STOR-M iron core tokamak. Even when the inner OH coil is disconnected, the outer OH coils alone can induce the plasma current as primary windings and initial breakdown are even easier in this coil layout. This result suggests a possibility to use an iron core in a spherical tokamak to start up the plasma current without a central solenoid. The effect of the iron core saturation on the extension of the discharge pulse length has been estimated for further experiments in the STOR-M tokamak.

3.
Phys Rev Lett ; 96(18): 185003, 2006 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-16712369

RESUMO

The first successful high power heating of a high dielectric constant spherical tokamak plasma by an electron Bernstein wave (EBW) is reported. An EBW was excited by mode conversion (MC) of an mode cyclotron wave injected from the low magnetic field side of the TST-2 spherical tokamak. Evidence of electron heating was observed as increases in the stored energy and soft x-ray emission. The increased emission was concentrated in the plasma core region. A heating efficiency of over 50% was achieved, when the density gradient in the MC region was sufficiently steep.

4.
Phys Rev Lett ; 92(3): 035001, 2004 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-14753880

RESUMO

A new operational scenario of advanced tokamak formation was demonstrated in the JT-60U tokamak. This was accomplished by electron cyclotron and lower hybrid waves, neutral beam injection, and the loop voltage supplied by the vertical field and shaping coils. The Ohmic heating (OH) solenoid was not used but a small inboard coil (part of the shaping coil), providing less than 20% of total poloidal flux, was used. The plasma thus obtained had both internal and edge transport barriers, with an energy confinement time of 1.6 times H-mode scaling, a poloidal beta of 3.6, and a normalized beta of 1.6, and a large bootstrap current fraction (>90%). This result opens up a possibility to reduce, and eventually eliminate, the OH solenoid from a tokamak reactor, which will greatly improve its economic competitiveness.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...