Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Curr Biol ; 34(9): 1940-1952.e5, 2024 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-38640924

RESUMO

The primary visual cortex (V1) and the superior colliculus (SC) both occupy stations early in the processing of visual information. They have long been thought to perform distinct functions, with the V1 supporting the perception of visual features and the SC regulating orienting to visual inputs. However, growing evidence suggests that the SC supports the perception of many of the same visual features traditionally associated with the V1. To distinguish V1 and SC contributions to visual processing, it is critical to determine whether both areas causally contribute to the detection of specific visual stimuli. Here, mice reported changes in visual contrast or luminance near their perceptual threshold while white noise patterns of optogenetic stimulation were delivered to V1 or SC inhibitory neurons. We then performed a reverse correlation analysis on the optogenetic stimuli to estimate a neuronal-behavioral kernel (NBK), a moment-to-moment estimate of the impact of V1 or SC inhibition on stimulus detection. We show that the earliest moments of stimulus-evoked activity in the SC are critical for the detection of both luminance and contrast changes. Strikingly, there was a robust stimulus-aligned modulation in the V1 contrast-detection NBK but no sign of a comparable modulation for luminance detection. The data suggest that behavioral detection of visual contrast depends on both V1 and SC spiking, whereas mice preferentially use SC activity to detect changes in luminance. Electrophysiological recordings showed that neurons in both the SC and V1 responded strongly to both visual stimulus types, while the reverse correlation analysis reveals when these neuronal signals actually contribute to visually guided behaviors.


Assuntos
Optogenética , Estimulação Luminosa , Colículos Superiores , Percepção Visual , Animais , Camundongos , Percepção Visual/fisiologia , Colículos Superiores/fisiologia , Córtex Visual Primário/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Córtex Visual/fisiologia , Feminino , Sensibilidades de Contraste/fisiologia
2.
bioRxiv ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37662213

RESUMO

The primary visual cortex (V1) and the superior colliculus (SC) both occupy stations early in the processing of visual information. They have long been thought to perform distinct functions, with V1 supporting perception of visual features and the SC regulating orienting to visual inputs. However, growing evidence suggests that the SC supports perception of many of the same visual features traditionally associated with V1. To distinguish V1 and SC contributions to visual processing, it is critical to determine whether both areas causally contribute to perception of specific visual stimuli. Here, mice reported changes in visual contrast or luminance near perceptual threshold while we presented white noise patterns of optogenetic stimulation to V1 or SC inhibitory neurons. We then performed a reverse correlation analysis on the optogenetic stimuli to estimate a neuronal-behavioral kernel (NBK), a moment-to-moment estimate of the impact of V1 or SC inhibition on stimulus detection. We show that the earliest moments of stimulus-evoked activity in SC are critical for detection of both luminance or contrast changes. Strikingly, there was a robust stimulus-aligned modulation in the V1 contrast-detection NBK, but no sign of a comparable modulation for luminance detection. The data suggest that perception of visual contrast depends on both V1 and SC spiking, whereas mice preferentially use SC activity to detect changes in luminance. Electrophysiological recordings showed that neurons in both SC and V1 responded strongly to both visual stimulus types, while the reverse correlation analysis reveals when these neuronal signals actually contribute to visually-guided behaviors.

3.
J Vis ; 23(5): 18, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37223942

RESUMO

Understanding the circuits that access and read out information in the cerebral cortex to guide behavior remains a challenge for systems-level neuroscience. Recent optogenetic experiments targeting specific cell classes in mouse primary visual cortex (V1) have shown that mice are sensitive to optically-induced increases in V1 spiking but are relatively insensitive to decreases in neuronal spiking of similar magnitude and time course. This asymmetry suggests that the readout of signals from cortex depends preferentially on increases in spike rate. We investigated whether humans display a similar asymmetry by measuring thresholds for detecting changes in the motion coherence of dynamic random dot stimuli. The middle temporal visual area (MT) has been shown to play an important role in discriminating random dot stimuli, and the responses of its individual neurons to dynamic random dots are well characterized. Although both increments and decrements in motion coherence have heterogeneous effects on MT responses, increments cause on average more increases in firing rates. Consistent with this, we found that subjects are more sensitive to increments of random dot motion coherence than to decrements of coherence. The magnitude of the difference in detectability was consistent with the expected difference in neuronal signal-to-noise associated with MT spike rate increases driven by coherence increments and decrements. The results add strength to the notion that the circuit mechanisms that read out cortical signals are relatively insensitive to decrements in cortical spiking.


Assuntos
Córtex Cerebral , Neurônios , Humanos , Animais , Camundongos , Movimento (Física)
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...