Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31767721

RESUMO

N4-Hydroxycytidine (NHC) is an antiviral ribonucleoside analog that acts as a competitive alternative substrate for virally encoded RNA-dependent RNA polymerases. It exhibits measurable levels of cytotoxicity, with 50% cytotoxic concentration values ranging from 7.5 µM in CEM cells and up to >100 µM in other cell lines. The mitochondrial DNA-dependent RNA polymerase (POLRMT) has been shown to incorporate some nucleotide analogs into mitochondrial RNAs, resulting in substantial mitochondrial toxicity. NHC was tested in multiple assays intended to determine its potential to cause mitochondrial toxicity. NHC showed similar cytotoxicity in HepG2 cells incubated in a glucose-free and glucose-containing media, suggesting that NHC does not impair mitochondrial function in this cell line based on the Crabtree effect. We demonstrate that the 5'-triphosphate of NHC can be used by POLRMT for incorporation into nascent RNA chain but does not cause immediate chain termination. In PC-3 cells treated with NHC, the 50% inhibitory concentrations of mitochondrial protein expression inhibition were 2.7-fold lower than those for nuclear-encoded protein expression, but this effect did not result in selective mitochondrial toxicity. A 14-day incubation of HepG2 cells with NHC had no effect on mitochondrial DNA copy number or extracellular lactate levels. In CEM cells treated with NHC at 10 µM, a slight decrease (by ∼20%) in mitochondrial DNA copy number and a corresponding slight increase in extracellular lactate levels were detected, but these effects were not enhanced by an increase in NHC treatment concentration. In summary, the results indicate that mitochondrial impairment by NHC is not the main contributor to the compound's observed cytotoxicity in these cell lines.


Assuntos
Citidina/análogos & derivados , Mitocôndrias Hepáticas/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Meios de Cultura , Citidina/farmacologia , DNA Mitocondrial/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Dosagem de Genes , Células Hep G2 , Humanos , Ácido Láctico/metabolismo , Fosfatos/farmacologia
2.
Sci Transl Med ; 11(515)2019 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-31645453

RESUMO

Influenza viruses constitute a major health threat and economic burden globally, frequently exacerbated by preexisting or rapidly emerging resistance to antiviral therapeutics. To address the unmet need of improved influenza therapy, we have created EIDD-2801, an isopropylester prodrug of the ribonucleoside analog N 4-hydroxycytidine (NHC, EIDD-1931) that has shown broad anti-influenza virus activity in cultured cells and mice. Pharmacokinetic profiling demonstrated that EIDD-2801 was orally bioavailable in ferrets and nonhuman primates. Therapeutic oral dosing of influenza virus-infected ferrets reduced group pandemic 1 and group 2 seasonal influenza A shed virus load by multiple orders of magnitude and alleviated fever, airway epithelium histopathology, and inflammation, whereas postexposure prophylactic dosing was sterilizing. Deep sequencing highlighted lethal viral mutagenesis as the underlying mechanism of activity and revealed a prohibitive barrier to the development of viral resistance. Inhibitory concentrations were low nanomolar against influenza A and B viruses in disease-relevant well-differentiated human air-liquid interface airway epithelia. Correlating antiviral efficacy and cytotoxicity thresholds with pharmacokinetic profiles in human airway epithelium models revealed a therapeutic window >1713 and established dosing parameters required for efficacious human therapy. These data recommend EIDD-2801 as a clinical candidate with high potential for monotherapy of seasonal and pandemic influenza virus infections. Our results inform EIDD-2801 clinical trial design and drug exposure targets.


Assuntos
Antivirais/administração & dosagem , Antivirais/uso terapêutico , Influenza Humana/tratamento farmacológico , Animais , Cães , Farmacorresistência Viral/genética , Feminino , Furões , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Vírus da Influenza A Subtipo H1N1/efeitos dos fármacos , Vírus da Influenza A Subtipo H1N1/patogenicidade , Células Madin Darby de Rim Canino , Camundongos , Microscopia Confocal , Infecções por Orthomyxoviridae/tratamento farmacológico , RNA Viral/genética
3.
Antiviral Res ; 171: 104597, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31494195

RESUMO

The New World alphaviruses Venezuelan, Eastern, and Western equine encephalitis viruses (VEEV, EEEV and WEEV, respectively) commonly cause a febrile disease that can progress to meningoencephalitis, resulting in significant morbidity and mortality. To address the need for a therapeutic agent for the treatment of Alphavirus infections, we identified and pursued preclinical characterization of a ribonucleoside analog EIDD-1931 (ß-D-N4-hydroxycytidine, NHC), which has shown broad activity against alphaviruses in vitro and has a very high genetic barrier for development of resistance. To be truly effective as a therapeutic agent for VEEV infection a drug must penetrate the blood brain barrier and arrest virus replication in the brain. High plasma levels of EIDD-1931 are rapidly achieved in mice after oral dosing. Once in the plasma EIDD-1931 is efficiently distributed into organs, including brain, where it is rapidly converted to its active 5'-triphosphate. EIDD-1931 showed a good safety profile in mice after 7-day repeated dosing with up to 1000 mg/kg/day doses. In mouse model studies, EIDD-1931 was 90-100% effective in protecting mice against lethal intranasal infection when therapeutic treatment was started as late as 24 h post-infection, and partial protection was achieved when treatment was delayed for 48 h post-infection. These results support further preclinical development of EIDD-1931 as a potential anti-alphavirus drug.


Assuntos
Antivirais/farmacologia , Vírus da Encefalite Equina Venezuelana/efeitos dos fármacos , Encefalomielite Equina Venezuelana/virologia , Ribonucleosídeos/farmacologia , Administração Oral , Animais , Antivirais/administração & dosagem , Antivirais/química , Antivirais/farmacocinética , Linhagem Celular , Cromatografia Líquida , Modelos Animais de Doenças , Encefalomielite Equina Venezuelana/tratamento farmacológico , Cavalos , Camundongos , Estrutura Molecular , Ribonucleosídeos/administração & dosagem , Ribonucleosídeos/química , Ribonucleosídeos/farmacocinética , Espectrometria de Massas em Tandem , Distribuição Tecidual , Replicação Viral/efeitos dos fármacos
4.
Artigo em Inglês | MEDLINE | ID: mdl-29891600

RESUMO

Morbidity and mortality resulting from influenza-like disease are a threat, especially for older adults. To improve case management, next-generation broad-spectrum antiviral therapeutics that are efficacious against major drivers of influenza-like disease, including influenza viruses and respiratory syncytial virus (RSV), are urgently needed. Using a dual-pathogen high-throughput screening protocol for influenza A virus (IAV) and RSV inhibitors, we have identified N4-hydroxycytidine (NHC) as a potent inhibitor of RSV, influenza B viruses, and IAVs of human, avian, and swine origins. Biochemical in vitro polymerase assays and viral RNA sequencing revealed that the ribonucleotide analog is incorporated into nascent viral RNAs in place of cytidine, increasing the frequency of viral mutagenesis. Viral passaging in cell culture in the presence of an inhibitor did not induce robust resistance. Pharmacokinetic profiling demonstrated dose-dependent oral bioavailability of 36 to 56%, sustained levels of the active 5'-triphosphate anabolite in primary human airway cells and mouse lung tissue, and good tolerability after extended dosing at 800 mg/kg of body weight/day. The compound was orally efficacious against RSV and both seasonal and highly pathogenic avian IAVs in mouse models, reducing lung virus loads and alleviating disease biomarkers. Oral dosing reduced IAV burdens in a guinea pig transmission model and suppressed virus spread to uninfected contact animals through direct transmission. Based on its broad-spectrum efficacy and pharmacokinetic properties, NHC is a promising candidate for future clinical development as a treatment option for influenza-like diseases.


Assuntos
Antivirais/farmacologia , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Animais , Células Cultivadas , Cobaias , Humanos , Vírus da Influenza A/efeitos dos fármacos , Vírus da Influenza A/genética , Vírus da Influenza B/efeitos dos fármacos , Vírus da Influenza B/genética , Camundongos , RNA Viral/genética , Vírus Sincicial Respiratório Humano/genética , Vírus Sinciciais Respiratórios/efeitos dos fármacos , Vírus Sinciciais Respiratórios/genética
5.
J Med Chem ; 60(6): 2305-2325, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28245119

RESUMO

Respiratory syncytial virus (RSV) represents a threat to infants, the elderly, and the immunocompromised. RSV entry blockers are in clinical trials, but escape mutations challenge their potential. In search of RSV inhibitors, we have integrated a signature resistance mutation into a recombinant RSV virus and applied the strain to high-throughput screening. Counterscreening of candidates returned 14 confirmed hits with activities in the nano- to low-micromolar range. All blocked RSV polymerase activity in minigenome assays. Compound 1a (GRP-74915) was selected for development based on activity (EC50 = 0.21 µM, selectivity index (SI) 40) and scaffold. Resynthesis confirmed the potency of the compound, which suppressed viral RNA synthesis in infected cells. However, metabolic testing revealed a short half-life in the presence of mouse hepatocyte fractions. Metabolite tracking and chemical elaboration combined with 3D-quantitative structure-activity relationship modeling yielded analogues (i.e., 8n: EC50 = 0.06 µM, SI 500) that establish a platform for the development of a therapeutic candidate.


Assuntos
Antivirais/química , Antivirais/farmacologia , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , Desenho de Fármacos , Infecções por Vírus Respiratório Sincicial/tratamento farmacológico , Vírus Sincicial Respiratório Humano/efeitos dos fármacos , Vírus Sincicial Respiratório Humano/enzimologia , Animais , Antivirais/metabolismo , Linhagem Celular , RNA Polimerases Dirigidas por DNA/metabolismo , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Relação Quantitativa Estrutura-Atividade , Infecções por Vírus Respiratório Sincicial/virologia , Vírus Sincicial Respiratório Humano/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Virais/antagonistas & inibidores , Proteínas Virais/metabolismo
6.
J Vis Exp ; (115)2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27768025

RESUMO

We demonstrate a superior method of 2D spectral-spatial imaging of stable radical reporter molecules at 250 MHz using rapid-scan electron-paramagnetic-resonance (RS-EPR), which can provide quantitative information under in vivo conditions on oxygen concentration, pH, redox status and concentration of signaling molecules (i.e., OH•, NO•). The RS-EPR technique has a higher sensitivity, improved spatial resolution (1 mm), and shorter acquisition time in comparison to the standard continuous wave (CW) technique. A variety of phantom configurations have been tested, with spatial resolution varying from 1 to 6 mm, and spectral width of the reporter molecules ranging from 16 µT (160 mG) to 5 mT (50 G). A cross-loop bimodal resonator decouples excitation and detection, reducing the noise, while the rapid scan effect allows more power to be input to the spin system before saturation, increasing the EPR signal. This leads to a substantially higher signal-to-noise ratio than in conventional CW EPR experiments.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Transdução de Sinais , Concentração de Íons de Hidrogênio , Oxirredução , Oxigênio , Imagens de Fantasmas , Cintilografia
7.
J Magn Reson ; 259: 20-3, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26277376

RESUMO

Rapid-scan EPR signals for semiquinones with very-small well-resolved hyperfine splittings exhibit coherence signals at a time after passing through the EPR line that is proportional to the reciprocal of the hyperfine splitting. Such coherences are a general phenomenon due to constructive interference of the responses to transient excitation of spins by rapid scan of the magnetic field across equally spaced spin packets. Examples are shown for 2,3,5,6-tetramethoxy-1,4-benzosemiquinone with aH=46 mG for 12 protons and for 2,5-di-t-butyl-1,4-benzosemiquinone with aH=59 mG for 18 protons.


Assuntos
Quinonas/química , Campos Eletromagnéticos , Espectroscopia de Ressonância de Spin Eletrônica , Oxigênio/química , Prótons
8.
Chemphyschem ; 16(3): 528-31, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25488257

RESUMO

Radicals, including hydroxyl, superoxide, and nitric oxide, play key signaling roles in vivo. Reaction of these free radicals with a spin trap affords more stable paramagnetic nitroxides, but concentrations in vivo still are so low that detection by electron paramagnetic resonance (EPR) is challenging. Three innovative enabling technologies have been combined to substantially improve sensitivity for imaging spin-trapped radicals at 250 MHz. 1) Spin-trapped adducts of BMPO have lifetimes that are long enough to make imaging by EPR at 250 MHz feasible. 2) The signal-to-noise ratio of rapid-scan EPR is substantially higher than for conventional continuous-wave EPR. 3) An improved algorithm permits image reconstruction with a spectral dimension that encompasses the full 50 G spectrum of the BMPO-OH spin adduct without requiring the wide sweeps that would be needed for filtered backprojection. A 2D spectral-spatial image is shown for a phantom containing ca. 5 µM BMPO-OH.


Assuntos
Radical Hidroxila/química , Detecção de Spin , Óxidos N-Cíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica
9.
J Chem Phys ; 141(23): 234306, 2014 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-25527934

RESUMO

Collisional energy transfer between vibrational ground state CO2 and highly vibrationally excited monofluorobenzene (MFB) was studied using narrow bandwidth (0.0003 cm(-1)) IR diode laser absorption spectroscopy. Highly vibrationally excited MFB with E' = ∼41,000 cm(-1) was prepared by 248 nm UV excitation followed by rapid radiationless internal conversion to the electronic ground state (S1→S0*). The amount of vibrational energy transferred from hot MFB into rotations and translations of CO2 via collisions was measured by probing the scattered CO2 using the IR diode laser. The absolute state specific energy transfer rate constants and scattering probabilities for single collisions between hot MFB and CO2 were measured and used to determine the energy transfer probability distribution function, P(E,E'), in the large ΔE region. P(E,E') was then fit to a bi-exponential function and extrapolated to the low ΔE region. P(E,E') and the biexponential fit data were used to determine the partitioning between weak and strong collisions as well as investigate molecular properties responsible for large collisional energy transfer events. Fermi's Golden rule was used to model the shape of P(E,E') and identify which donor vibrational motions are primarily responsible for energy transfer. In general, the results suggest that low-frequency MFB vibrational modes are primarily responsible for strong collisions, and govern the shape and magnitude of P(E,E'). Where deviations from this general trend occur, vibrational modes with large negative anharmonicity constants are more efficient energy gateways than modes with similar frequency, while vibrational modes with large positive anharmonicity constants are less efficient at energy transfer than modes of similar frequency.

11.
Biophys J ; 105(2): 338-42, 2013 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-23870255

RESUMO

The short lifetime of superoxide and the low rates of formation expected in vivo make detection by standard continuous wave (CW) electron paramagnetic resonance (EPR) challenging. The new rapid-scan EPR method offers improved sensitivity for these types of samples. In rapid-scan EPR, the magnetic field is scanned through resonance in a time that is short relative to electron spin relaxation times, and data are processed to obtain the absorption spectrum. To validate the application of rapid-scan EPR to spin trapping, superoxide was generated by the reaction of xanthine oxidase and hypoxanthine with rates of 0.1-6.0 µM/min and trapped with 5-tert-butoxycarbonyl-5-methyl-1-pyrroline-N-oxide (BMPO). Spin trapping with BMPO to form the BMPO-OOH adduct converts the very short-lived superoxide radical into a more stable spin adduct. There is good agreement between the hyperfine splitting parameters obtained for BMPO-OOH by CW and rapid-scan EPR. For the same signal acquisition time, the signal/noise ratio is >40 times higher for rapid-scan than for CW EPR. Rapid-scan EPR can detect superoxide produced by Enterococcus faecalis at rates that are too low for detection by CW EPR.


Assuntos
Limite de Detecção , Detecção de Spin/métodos , Superóxidos/análise , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Enterococcus faecalis/química , Hipoxantina/química , Polipropilenos/química , Superóxidos/química , Xantina Oxidase/química
12.
Biotechnol Bioeng ; 110(7): 1936-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23359480

RESUMO

Electron paramagnetic resonance spectroscopy is used to observe hydroxyl radicals produced by an atmospheric pressure nonthermal plasma device at distances greater than 1 m from the discharge. The plasma device is an indirect treatment setup with closed loop airflow and hydrogen peroxide additives that is effective in deactivating bacteria on time scales of seconds. The generation of the detected hydroxyl radicals is shown to occur in secondary chemical processes near the point of delivery of the plasma treated air stream. The production of hydroxyl radicals is correlated with humidity of the air stream and ability to lyse bacterial membranes. The overall mechanisms of bacteria inactivation are found to be a combinatorial effect of effluent species. The results indicate the feasibility of selective plasma induced free radical delivery for biomedical applications even in the case of short-lived species like the hydroxyl radical.


Assuntos
Bactérias/efeitos dos fármacos , Fenômenos Químicos , Desinfetantes/farmacologia , Radical Hidroxila/farmacologia , Gases em Plasma/química , Viabilidade Microbiana/efeitos dos fármacos
13.
J Magn Reson ; 223: 80-4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22967891

RESUMO

The rapidly-changing magnetic field of sinusoidal rapid scans creates background signals that are dominated by oscillations at the scan frequency. The background oscillations can be removed without acquiring off-resonance data. For data acquired in quadrature, up-field and down-field scan signals can be separated in the frequency domain. For each scan direction, the background oscillation can be calculated by fitting to the half cycle that does not contain the EPR signal. The extrapolated fit function is then subtracted from the half cycle that contains the EPR signal. By zeroing the array for the half cycles that do not contain the EPR signal, the signal-to-noise is improved and the data are corrected for non-orthogonality of the quadrature channels.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Algoritmos , Interpretação Estatística de Dados , Eletroquímica , Campos Eletromagnéticos , Enzimas/química , Análise de Fourier
14.
J Am Chem Soc ; 134(38): 15724-7, 2012 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-22974177

RESUMO

We report a molecular design that provides an intravenously injectable organic radical contrast agent (ORCA) for which the molecular (1)H water relaxivity (r(1)) is ca. 5 mM(-1) s(-1). The ORCA is based on spirocyclohexyl nitroxide radicals and poly(ethylene glycol) chains conjugated to a fourth-generation polypropylenimine dendrimer scaffold. The metal-free ORCA has a long shelf life and provides selectively enhanced magnetic resonance imaging in mice for over 1 h.


Assuntos
Meios de Contraste , Imageamento por Ressonância Magnética/métodos , Compostos Orgânicos
15.
J Magn Reson ; 214(1): 221-6, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22169156

RESUMO

X-band rapid-scan EPR spectra were obtained for dilute aqueous solutions of nitroxyl radicals (15)N-mHCTPO (4-hydro-3-carbamoyl-2,2,5,5-tetra-perdeuteromethyl-pyrrolin-1-(15)N-oxyl-d(12)) and (15)N-PDT (4-oxo-2,2,6,6-tetra-perdeuteromethyl-piperidinyl-(15)N-oxyl-d(16)). Simulations of spectra for (15)N-mHCTPO and (15)N-PDT agreed well with the experimental spectra. As the scan rate is increased in the rapid scan regime, the region in which signal amplitude increases linearly with B(1) extends to higher power and the maximum signal amplitude increases. In the rapid scan regime, the signal-to-noise for rapid-scan spectra was about a factor of 2 higher than for unbroadened CW EPR, even when the rapid scan spectra were obtained in a mode that had only 4% duty cycle for data acquisition. Further improvement in signal-to-noise per unit time is expected for higher duty cycles. Rapid scan spectra have higher bandwidth than CW spectra and therefore require higher detection bandwidths at faster scan rates. However, when the scan rate is increased by increasing the scan frequency, the increase in noise from the detection bandwidth is compensated by the decrease in noise due to increased number of averages per unit time. Because of the higher signal bandwidth, lower resonator Q is needed for rapid scan than for CW, so the rapid scan method is advantageous for lossy samples that inherently lower resonator Q.


Assuntos
Algoritmos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Óxidos de Nitrogênio/análise , Óxidos de Nitrogênio/química , Processamento de Sinais Assistido por Computador , Micro-Ondas
16.
Radiat Meas ; 46(9): 993-996, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22003310

RESUMO

The E' defect in irradiated fused quartz has spin lattice relaxation times (T(1)) about 100 to 300 µs and spin-spin relaxation times (T(2)) up to about 200 µs, depending on the concentration of defects and other species in the sample. These long relaxation times make it difficult to record an unsaturated continuous wave (CW) electron paramagnetic resonance (EPR) signal that is free of passage effects. Signals measured at X-band (~9.5 GHz) by three EPR methods: conventional slow-scan field modulated EPR, rapid scan EPR, and pulsed EPR, were compared. To acquire spectra with comparable signal-to-noise, both pulsed and rapid scan EPR require less time than conventional CW EPR. Rapid scan spectroscopy does not require the high power amplifiers that are needed for pulsed EPR. The pulsed spectra, and rapid scan spectra obtained by deconvolution of the experimental data, are free of passage effects.

17.
Artigo em Inglês | MEDLINE | ID: mdl-21607115

RESUMO

A general purpose pulsed microwave circuit was developed for the purpose of measuring resonator Q by the pulse ring-down method in EPR spectrometers without pulse capability. The circuit was installed and tested in a Bruker X-band EPR bridge. This method and circuit could be adapted for use in a variety of spectrometers operating at various microwave frequencies.

18.
J Phys Chem B ; 115(24): 7986-90, 2011 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-21574594

RESUMO

The electron spin-spin relaxation time (T(2)) for the 1:1 crystalline complex of α,γ-bisdiphenylene-ß-phenylallyl (BDPA) with benzene was determined by continuous wave (CW) and rapid scan electron paramagnetic resonance (EPR). T(2) for individual BDPA particles found by simulation of rapid scan spectra or by simulation of the Lorentzian line shapes of CW spectra were in good agreement. The T(2) for small BDPA particles in air ranged from 80 to 160 ns, which corresponds to peak-to-peak Lorentzian linewidths of 0.82-0.41 G. The removal of oxygen from the samples had a greater impact on the line width for particles that had shorter T(2) in air. Heterogeneity in the g-value was not observed at X-band. Scanning electron microscope (SEM) images showed that the BDPA particles had varying morphology.


Assuntos
Compostos Alílicos/química , Benzeno/química , Elétrons , Espectroscopia de Ressonância de Spin Eletrônica , Oxigênio/química
19.
J Phys Chem A ; 112(12): 2543-52, 2008 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-18321080

RESUMO

Relaxation of highly vibrationally excited pyridine (C5NH5) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot pyridine (E' = 40,660 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Pyridine then collides with CO2, populating the high rotational CO2 states with large amounts of translational energy. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these CO2 rotational states. Doppler spectroscopy was used to measure the CO2 recoil velocity distribution for J = 58-80 of the 00(0)0 state. The energy-transfer distribution function, P(E,E'), from E' - E approximately 1300-7000 cm(-1) was obtained by re-sorting the state-indexed energy-transfer probabilities as a function of DeltaE. P(E,E') is fit to an exponential or biexponential function to determine the average energy transferred in a single collision between pyridine and CO2. Also obtained are fit parameters that can be compared to previously studied systems (pyrazine, C6F6, methylpyrazine, and pyrimidine/CO2). Although the rotational and translational temperatures that describe pyridine/CO2 energy transfer are similar to previous systems, the energy-transfer probabilities are much smaller. P(E,E') fit parameters for pyridine/CO2 and the four previously studied systems are compared to various donor molecular properties. Finally, P(E,E') is analyzed in the context of two models, one indicating that P(E,E') shape is primarily determined by the low-frequency out-of-plane donor vibrational modes, and the other that indicates that P(E,E') shape can be determined from how the donor molecule final density of states changes with DeltaE.

20.
J Phys Chem A ; 112(6): 1157-67, 2008 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-18201072

RESUMO

Relaxation of highly vibrationally excited 1,2-, 1,3-, and 1,4-difluorobenzne (DFB) by collisions with carbon dioxide has been investigated using diode laser transient absorption spectroscopy. Vibrationally hot DFB (E' approximately 41,000 cm(-1)) was prepared by 248 nm excimer laser excitation followed by rapid radiationless relaxation to the ground electronic state. Collisions between hot DFB isomers and CO2 result in large amounts of rotational and translational energy transfer from the hot donors to the bath. The CO2 nascent rotational population distribution of the high-J (J = 58-80) tail of the 00(0)0 state was probed at short times following the excimer laser pulse to measure rate constants and probabilities for collisions populating these states. The amount of translational energy gained by CO2 during collisions was determined using Doppler spectroscopy to measure the width of the absorption line for each transition. The energy transfer probability distribution function, P(E,E'), for the large DeltaE tail was obtained by resorting the state-indexed energy transfer probabilities as a function of DeltaE. P(E,E') was fit to a biexponential function to determine the average energy transferred in a single DFB/CO2 collision and fit parameters describing the shape of P(E,E'). P(E,E') fit parameters for DFB/CO2 and the previously studied C6F6/CO2 system are compared to various donor molecular properties. A model based on Fermi's Golden Rule indicates that the shape of P(E,E') is primarily determined by the low-frequency out-of-plane donor vibrational modes. A fractional mode population analysis is performed, which suggests that for energy transfer from DFB and C6F6 to CO2 the two key donor vibrational modes from which energy leaks out of the donor into the bath are nu11 and nu16. These "gateway" modes are some of the same modes determined to be the most efficient energy transfer modes by quantum scattering studies of benzene/He collisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...