Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 43(3): 1082-9, 2004 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-14753831

RESUMO

CsLnMnSe(3) (Ln = Sm, Gd, Tb, Dy, Ho, Er, Tm, Yb, Y) and AYbZnQ(3) (A = Rb, Cs; Q = S, Se, Te) have been synthesized from solid-state reactions at temperatures in excess 1173 K. These isostructural materials crystallize in the layered KZrCuS(3) structure type in the orthorhombic space group Cmcm. The structure is composed of LnQ(6) octahedra and MQ(4) tetrahedra that share edges to form [LnMQ(3)] layers. These layers stack perpendicular to [010] and are separated by layers of face- and edge-sharing AQ(8) bicapped trigonal prisms. There are no Q-Q bonds in the structure of the ALnMQ(3) compounds so the formal oxidation states of A/Ln/M/Q are 1+/3+/2+/2-. The CsLnMnSe(3) materials, with the exception of CsYbMnSe(3), are Curie-Weiss paramagnets between 5 and 300 K. The magnetic susceptibility data for CsYbZnS(3), RbYbZnSe(3), and CsYbMSe(3) (M = Mn, Zn) show a weak cusp at approximately 10 K and pronounced differences between field-cooled and zero-field-cooled data. However, CsYbZnSe(3) is not an antiferromagnet because a neutron diffraction study indicates that CsYbZnSe(3) shows neither long-range magnetic ordering nor a phase change between 4 and 295 K. Nor is the compound a spin glass because the transition at 10 K does not depend on ac frequency. The optical band gaps of the (010) and (001) crystal faces for CsYbMnSe(3) are 1.60 and 1.59 eV, respectively; the optical band of the (010) crystal faces for CsYbZnS(3) and RbYbZnSe(3) are 2.61 and 2.07 eV, respectively.

2.
Inorg Chem ; 42(13): 4109-16, 2003 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-12817969

RESUMO

CsLnCdSe(3) (Ln = Ce, Pr, Sm, Gd, Tb, Dy, Y) and CsLnHgSe(3) (Ln = La, Ce, Pr, Nd, Sm, Gd, Y) have been synthesized at 1123 K. These isostructural materials crystallize in the layered KZrCuS(3) structure type in the orthorhombic space group Cmcm and are group X extensions of the previously characterized Zn compounds. The structure is composed of two-dimensional [LnMSe(3)] layers that stack perpendicular to [010] and are separated by layers of face- and edge-sharing CsSe(8) bicapped trigonal prisms. Because there are no Se-Se bonds in the structure of CsLnMSe(3) (M = Zn, Cd, Hg), the formal oxidation states of Cs/Ln/M/Se are 1+/3+/2+/2-. CsSmHgSe(3) does not adhere to the Curie-Weiss law, whereas CsCeHgSe(3) and CsGdHgSe(3) are Curie-Weiss paramagnets with micro (eff) values of 2.77 and 7.90 micro (B), corresponding well with the theoretical values of 2.54 and 7.94 micro (B) for Ce(3+) and Gd(3+), respectively. Single-crystal optical absorption measurements were performed with polarized light perpendicular to the (010) and (001) crystal faces of these materials. The band gaps of the (010) crystal faces range from 1.94 eV (CsCeHgSe(3)) to 2.58 eV (CsYCdSe(3)) whereas those of the (001) crystal faces span the range 2.37 eV (CsSmHgSe(3)) to 2.54 eV (CsYCdSe(3) and CsYHgSe(3)). The largest band gap variation between crystal faces is 0.06 eV for CsYCdSe(3). Theoretical calculations for CsYMSe(3) indicate that these materials are direct band gap semiconductors whose colors and optical band gaps are dependent upon the orbitals of Y, M, and Se.

3.
Chem Rev ; 102(6): 1929-52, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12059258
4.
Inorg Chem ; 41(5): 1199-204, 2002 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-11874356

RESUMO

Eight new quaternary selenides CsSmZnSe(3), CsTbZnSe(3), CsDyZnSe(3), CsHoZnSe(3,) CsErZnSe(3), CsTmZnSe(3), CsYbZnSe(3), and CsYZnSe(3) have been synthesized with the use of high-temperature solid-state experimental methods. These compounds are isostructural with KZrCuS(3), crystallizing with four formula units in the orthorhombic space group Cmcm. The structure of these CsLnZnSe(3) compounds is composed of [LnZnSe(3)(-)] layers separated by Cs atoms. The Ln atom is octahedrally coordinated by six Se atoms, the Zn atom is tetrahedrally coordinated by four Se atoms, and the Cs atom is coordinated by a bicapped trigonal prism of eight Se atoms. Because there are no Se-Se bonds in the structure, the oxidation state of Cs is 1+, that of Ln is 3+, and that of Zn is 2+. CsYbZnSe(3) exhibits an antiferromagnetic transition at 11 K, whereas CsSmZnSe(3) does not follow a Curie-Weiss law. The remaining rare-earth compounds are paramagnetic, and the calculated effective magnetic moments of the rare-earth ions agree well with their theoretical values. Optical absorption data on face-indexed single crystals of CsSmZnSe(3), CsErZnSe(3), CsYbZnSe(3), and CsYZnSe(3) demonstrate that the optical band gap changes by more than 0.75 eV with the composition and by as much as 0.20 eV with the crystal orientation. The optical band gaps range from 2.63 eV (CsSmZnSe(3), CsErZnSe(3)) to 1.93 eV (CsYbZnSe(3)) for the (010) crystal face and 2.56 eV (CsErZnSe(3)) to 1.88 eV (CsYbZnSe(3)) for the (001) crystal face. The difference in the optical band gap of the (010) face vs the (001) face varies from +0.05 eV (CsYbZnSe(3)) to +0.20 eV (CsSmZnSe(3)).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA