Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22272716

RESUMO

Two years after the emergence of SARS-CoV-2, there is still a need for better ways to assess the risk of transmission in congregate spaces. We deployed active air samplers to monitor the presence of SARS-CoV-2 in real-world settings across communities in the Upper Midwestern states of Wisconsin and Minnesota. Over 29 weeks, we collected 527 air samples from 15 congregate settings and detected 106 SARS-CoV-2 positive samples, demonstrating SARS-CoV-2 can be detected in air collected from daily and weekly sampling intervals. We expanded the utility of air surveillance to test for 40 other respiratory pathogens. Surveillance data revealed differences in timing and location of SARS-CoV-2 and influenza A virus detection in the community. In addition, we obtained SARS-CoV-2 genome sequences from air samples to identify variant lineages. Collectively, this shows air surveillance is a scalable, cost-effective, and high throughput alternative to individual testing for detecting respiratory pathogens in congregate settings.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20184796

RESUMO

SARS-CoV-2 testing is crucial to controlling the spread of this virus, yet shortages of nucleic acid extraction supplies and other key reagents have hindered the response to COVID-19 in the US. Several groups have described loop-mediated isothermal amplification (LAMP) assays for SARS-CoV-2, including testing directly from nasopharyngeal swabs and eliminating the need for reagents in short supply. Here we describe a fluorescence-based RT-LAMP test using direct nasopharyngeal swab samples and show consistent detection in clinically confirmed samples, albeit with approximately 100-fold lower sensitivity than qRT-PCR. We demonstrate that adding lysis buffer directly into the RT-LAMP reaction improves the sensitivity of some samples by approximately 10-fold. Overall, the limit of detection (LOD) of RT-LAMP using direct nasopharyngeal swab or saliva samples without RNA extraction is 1x105-1x106 copies/ml. This LOD is sufficient to detect samples from which infectious virus can be cultured. Therefore, samples that test positive in this assay contain levels of virus that are most likely to perpetuate transmission. Furthermore, purified RNA achieves a similar LOD to qRT-PCR. These results indicate that high-throughput RT-LAMP testing could augment qRT-PCR in SARS-CoV-2 screening programs, especially while the availability of qRT-PCR testing and RNA extraction reagents is constrained.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20164038

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) control in the United States remains hampered, in part, by testing limitations. We evaluated a simple, outdoor, mobile, colorimetric reverse transcription loop-mediated isothermal amplification (RT-LAMP) assay workflow where self-collected saliva is tested for SARS-CoV-2 RNA. From July 16 to November 19, 2020, 4,704 surveillance samples were collected from volunteers and tested for SARS-CoV-2 at 5 sites. A total of 21 samples tested positive for SARS-CoV-2 by RT-LAMP; 12 were confirmed positive by subsequent quantitative reverse-transcription polymerase chain reaction (qRT-PCR) testing, while 8 were negative for SARS-CoV-2 RNA, and 1 could not be confirmed because the donor did not consent to further molecular testing. We estimated the RT-LAMP assays false-negative rate from July 16 to September 17, 2020 by pooling residual heat-inactivated saliva that was unambiguously negative by RT-LAMP into groups of 6 or less and testing for SARS-CoV-2 RNA by qRT-PCR. We observed a 98.8% concordance between the RT-LAMP and qRT-PCR assays, with only 5 of 421 RT-LAMP negative pools (2,493 samples) testing positive in the more sensitive qRT-PCR assay. Overall, we demonstrate a rapid testing method that can be implemented outside the traditional laboratory setting by individuals with basic molecular biology skills and can effectively identify asymptomatic individuals who would not typically meet the criteria for symptom-based testing modalities.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-096727

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is causing an exponentially increasing number of coronavirus disease 19 (COVID-19) cases globally. Prioritization of medical countermeasures for evaluation in randomized clinical trials is critically hindered by the lack of COVID-19 animal models that enable accurate, quantifiable, and reproducible measurement of COVID-19 pulmonary disease free from observer bias. We first used serial computed tomography (CT) to demonstrate that bilateral intrabronchial instillation of SARS-CoV-2 into crab-eating macaques (Macaca fascicularis) results in mild-to-moderate lung abnormalities qualitatively characteristic of subclinical or mild-to-moderate COVID-19 (e.g., ground-glass opacities with or without reticulation, paving, or alveolar consolidation, peri-bronchial thickening, linear opacities) at typical locations (peripheral>central, posterior and dependent, bilateral, multi-lobar). We then used positron emission tomography (PET) analysis to demonstrate increased FDG uptake in the CT-defined lung abnormalities and regional lymph nodes. PET/CT imaging findings appeared in all macaques as early as 2 days post-exposure, variably progressed, and subsequently resolved by 6-12 days post-exposure. Finally, we applied operator-independent, semi-automatic quantification of the volume and radiodensity of CT abnormalities as a possible primary endpoint for immediate and objective efficacy testing of candidate medical countermeasures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA