Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Prostaglandins Other Lipid Mediat ; 174: 106862, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38936541

RESUMO

Atherosclerosis is a chronic inflammatory disease forming plaques in medium and large-sized arteries. ADAMTS-4 (a disintegrin and metalloproteinase with thrombospondin motifs-4) is an extracellular-matrix remodelling enzyme involved in the degradation of versican in the arterial wall. Recent reports indicated that increased expression of ADAMTS-4 is associated with plaque progression and vulnerability. Bioactive components of dietary oil, like sesame oil, are reported to have anti-inflammatory and antioxidant properties. Here, we studied the effect of sesame oil on regulating ADAMTS-4 in high-fat diet-induced atherosclerosis rat model. Our results indicated that sesame oil supplementation improved the anti-inflammatory and anti-oxidative status of the body. It also reduced atherosclerotic plaque formation in high-fat diet-fed rats. Our results showed that the sesame oil supplementation significantly down-regulated the expression of ADAMTS-4 in serum and aortic samples. The versican, the large proteoglycan substrate of ADAMTS-4 in the aorta, was downregulated to normal control level on sesame oil supplementation. This study, for the first time, reveals that sesame oil could down-regulate the expression of ADAMTS-4 in high-fat diet-induced atherosclerosis, imparting a new therapeutic potential for sesame oil in the management of atherosclerosis.

2.
Heliyon ; 10(4): e25775, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375277

RESUMO

Academic success is a multifaceted achievement that depends on a myriad of factors, spanning personal, environmental, and institutional dimensions. The intricate interaction of numerous factors, such as how effective and interested a student is in their own academic performance, shapes their potential for academic achievement. This study's goal is to examine the effects that diversity, colour, and immigration status have on the academic accomplishment of 109 college students in Chinese province of Fujian. The main objective of the study to infer on how self-efficiency, self-interest, and stress affect academic achievement in particular. The researcher devised a survey tool in order to determine the degree of academic self-efficiency, academic self-interest, and stress connected to academic activities. The method of data collection that was used was called purposive sampling, and the participants were students in their primary year of university. The findings suggest that the scales that were used in the research have a high degree of reliability and exhibit very little inverse connection. "A Structural Equation Model (SEM) was created in order to examine the relative effects of stress and self-efficiency in predicting three aspects of academic performance: fresher man grade point average, credits earned, and persistence in studies beyond the first year (Considine and Zappala, 2002) [16]". According to the data, self-efficiency is a stronger and more reliable predictor than the pressure connected with academic achievement. In conclusion, this study's originality lies in its holistic approach to understanding academic success, and its research implications extend to policy development, intervention strategies, equity and inclusion efforts, future research directions, and teacher training, all aimed at improving the academic success of diverse student populations.

3.
J Fish Dis ; 47(5): e13927, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38284337

RESUMO

A permanent cell line, SPB (Snubnose pompano brain) was established from Trachinotus blochii by the explant culture method. It has been sub-cultured more than 75 passages and showed optimal growth at 28°C using L-15 medium supplemented with 15% to 20% FBS. The SPB cells were cryopreserved at different passage levels for various applications. SPB cells were composed of fibroblastic and epithelial-like cells. The SPB cells were tested for mycoplasma contamination which was found to be negative. The origin of the SPB cell line from T. blochii was confirmed by amplification of the mitochondrial cytochrome oxidase I (COI) gene. The transfection efficiency of SPB cell line is 15% assessed by expression of green fluorescent protein using pEGFP-N1 plasmid. In addition, two CMV promotor plasmids pFNCPE42-DNA and pcDNAVP28 were transfected to SPB cells and it shows high expression levels of FNCP of fish nodavirus and VP28 protein of white spot syndrome virus by immunostaining. The SPB cells showed susceptibility to SJNNV and the infection was confirmed by RT-PCR, Western blot, ELISA, TCID50 and RT-qPCR. Experimental infection was carried out in T. blochii using SJNNV propagated in SPB cell line and found 100% mortality with clinical signs. The infection was confirmed by RT-PCR. The SPB cell line can be used for propagation of fish viral pathogens and production of the recombinant proteins.


Assuntos
Doenças dos Peixes , Animais , Linhagem Celular , Peixes , Encéfalo , Expressão Gênica
4.
Protoplasma ; 261(3): 553-570, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38159129

RESUMO

Drought is a major limiting factor for rice (Oryza sativa L.) production globally, and a cost-effective seed priming technique using bio-elicitors has been found to have stress mitigating effects. Till date, mostly phytohormones have been preferred as bio-elicitors, but the present study is a novel attempt to demonstrate the favorable role of micronutrients-phytohormone cocktail, i.e., iron (Fe), zinc (Zn), and methyl jasmonate (MJ) via seed priming method in mitigating the deleterious impacts of drought stress through physio-biochemical and molecular manifestations. The effect of cocktail/priming was studied on the relative water content, chlorophyll a/b and carotenoid contents, proline content, abscisic acid (ABA) content, and on the activities of ascorbate peroxidase (APX), superoxide dismutase (SOD), NADPH oxidase (Nox), and catalase (CAT). The expressions of drought-responsive genes OsZn-SOD, OsFe-SOD, and Nox1 were found to be modulated under drought stress in contrasting rice genotypes -N-22 (Nagina-22, drought-tolerant) and PS-5 (Pusa Sugandh-5, drought-sensitive). A progressive rise in carotenoids (10-19%), ABA (18-50%), proline (60-80%), activities of SOD (27-62%), APX (46-61%), CAT (50-80%), Nox (16-30%), and upregulated (0.9-1.6-fold) expressions of OsZn-SOD, OsFe-SOD, and Nox1 genes were found in the primed plants under drought condition. This cocktail would serve as a potential supplement in modern agricultural practices utilizing seed priming technique to mitigate drought stress-induced oxidative burst in food crops.


Assuntos
Acetatos , Ciclopentanos , Oryza , Oxilipinas , Oryza/genética , Antioxidantes/metabolismo , Resistência à Seca , Clorofila A/metabolismo , Estresse Oxidativo , Ácido Abscísico/farmacologia , Ácido Abscísico/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Reguladores de Crescimento de Plantas/metabolismo , Carotenoides/metabolismo , Superóxido Dismutase/metabolismo , Secas , Sementes/metabolismo , Prolina/metabolismo
5.
Mol Cell Biochem ; 478(10): 2257-2270, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36781815

RESUMO

Cardiac function depends mainly on mitochondrial metabolism. Cold conditions increase the risk of cardiovascular diseases by increasing blood pressure. Adaptive thermogenesis leads to increased mitochondrial biogenesis and function in skeletal muscles and adipocytes. Here, we studied the effect of acute cold exposure on cardiac mitochondrial function and its regulation by sirtuins. Significant increase in mitochondrial DNA copy number as measured by the ratio between mitochondrial-coded COX-II and nuclear-coded cyclophilin A gene expression by qRT-PCR and increase in the expression of PGC-1α, a mitochondriogenic factor and its downstream target NRF-1 were observed on cold exposure. This was associated with an increase in the activity of SIRT-1, which is known to activate PGC-1α. Mitochondrial SIRT-3 was also upregulated. Increase in sirtuin activity was reflected in total protein acetylome, which decreased in cold-exposed cardiac tissue. An increase in mitochondrial MnSOD further indicated enhanced mitochondrial function. Further evidence for this was obtained from ex vivo studies of cardiac tissue treated with norepinephrine, which caused a significant increase in mitochondrial MnSOD and SIRT-3. SIRT-3 appears to mediate the regulation of MnSOD, as treatment with AGK-7, a SIRT-3 inhibitor reversed the norepinephrine-induced upregulation of MnSOD. It, therefore, appears that SIRT-3 activation in response to SIRT-1-PGC-1α activation contributes to the regulation of cardiac mitochondrial activity during acute cold exposure.


Assuntos
Mitocôndrias , Sirtuínas , Mitocôndrias/metabolismo , Coração , Ativação Transcricional , Sirtuínas/metabolismo , Norepinefrina , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo
6.
Front Genet ; 13: 884106, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719375

RESUMO

Pennisetum glaucum (L.) R. Br., being widely grown in dry and hot weather, frequently encounters heat stress at various stages of growth. The crop, due to its inherent capacity, efficiently overcomes such stress during vegetative stages. However, the same is not always the case with the terminal (flowering through grain filling) stages of growth, where recovery from stress is more challenging. However, certain pearl millet genotypes such as 841-B are known to overcome heat stress even at the terminal growth stages. Therefore, we performed RNA sequencing of two contrasting genotypes of pearl millet (841-B and PPMI-69) subjected to heat stress (42°C for 6 h) at flowering stages. Over 274 million high quality reads with an average length of 150 nt were generated, which were assembled into 47,310 unigenes having an average length of 1,254 nucleotides, N50 length of 1853 nucleotides, and GC content of 53.11%. Blastx resulted in the annotation of 35,628 unigenes, and functional classification showed 15,950 unigenes designated to 51 Gene Ontology terms. A total of 13,786 unigenes were allocated to 23 Clusters of Orthologous Groups, and 4,255 unigenes were distributed to 132 functional Kyoto Encyclopedia of Genes and Genomes database pathways. A total of 12,976 simple sequence repeats and 305,759 SNPs were identified in the transcriptome data. Out of 2,301 differentially expressed genes, 10 potential candidate genes were selected based on log2 fold change and adjusted p value parameters for their differential gene expression by qRT-PCR. We were able to identify differentially expressed genes unique to either of the two genotypes, and also, some DEGs common to both the genotypes were enriched. The differential expression patterns suggested that 841-B 6 h has better ability to maintain homeostasis during heat stress as compared to PPMI-69 6 h. The sequencing data generated in this study, like the SSRs and SNPs, shall serve as an important resource for the development of genetic markers, and the differentially expressed heat responsive genes shall be used for the development of transgenic crops.

7.
Front Genet ; 12: 780599, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35198001

RESUMO

Rice is an important staple food grain consumed by most of the population around the world. With climate and environmental changes, rice has undergone a tremendous stress state which has impacted crop production and productivity. Plant growth hormones are essential component that controls the overall outcome of the growth and development of the plant. Cytokinin is a hormone that plays an important role in plant immunity and defense systems. Trans-zeatin is an active form of cytokinin that can affect plant growth which is mediated by a multi-step two-component phosphorelay system that has different roles in various developmental stages. Systems biology is an approach for pathway analysis to trans-zeatin treated rice that could provide a deep understanding of different molecules associated with them. In this study, we have used a weighted gene co-expression network analysis method to identify the functional modules and hub genes involved in the cytokinin pathway. We have identified nine functional modules comprising of different hub genes which contribute to the cytokinin signaling route. The biological significance of these identified hub genes has been tested by applying well-proven statistical techniques to establish the association with the experimentally validated QTLs and annotated by the DAVID server. The establishment of key genes in different pathways has been confirmed. These results will be useful to design new stress-resistant cultivars which can provide sustainable yield in stress-specific conditions.

8.
3 Biotech ; 10(5): 194, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32274290

RESUMO

Understanding the molecular mechanism underlying photoperiod sensitivity will play a crucial role in extending the cropping area of Cajanus cajan, a photoperiod sensitive major grain legume of India and Africa. In flowering plants, Flowering locus T (FT) gene is involved in the production of florigen molecule which is essential for induction of flowering, influenced largely by the duration of photoperiod. To understand the structural and regulatory nature of this gene, a genome-wide survey was carried out, revealing the presence of 13 PEBP (FT) family genes in C. cajan. Based on the gene expression profiling of 13 PEBP genes across the 30 tissues of C. cajan, CcFT6 and CcFT8 were found to be probable Flowering locus T genes responsible for the production of florigen as both of them showed expression in reproductive leaf. Expression analysis in photoperiod sensitive, MAL3 genotype revealed that CcFT6 is upregulated under SD. However, in photoperiod insensitive genotype (ICP20338) CcFT6 and CcFT8 were upregulated in SD and LD, respectively. Hence, in ICP20338 under SD, flowering induction occurs with the involvement of CcFT6 while under LD, flowering induction seems to be associated with the expression of CcFT8. CcFT6 was found to be expressed only under favourable photoperiodic condition (SD) in both MAL3 and ICP20338 and may be regulated through a photoperiod dependent pathway. The presence of additional florigen producing gene, CcFT8 in ICP20338 which has the ability to flower in a photoperiod independent manner under LD conditions might provide some clues on its photoperiod insensitive nature. This study will provide a detailed characterization of the genes involved in photoperiodic regulation of flowering in C. cajan.

9.
Gene ; 707: 205-211, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30898697

RESUMO

Clusterbean (C. tetragonoloba) is an important, leguminous vegetable and industrial crop with vast genetic diversity but meager genetic, cytological and genomic information. In the present study, an optimized procedure of flow cytometry was used to estimate the genome size of three clusterbean species, represented by C. tetragonoloba (cv. RGC-936) and two wild relatives (C. serreta and C. senegalensis). For accurate estimation of genomic content, singlet G0/G1 populations of multiple tissues such as leaves, hypocotyl, and matured seeds were determined and used along with three different plant species viz. Pisum sativum (as primary), Oryza sativa, and Glycine max (secondary), as external and internal reference standards. Seed tissue of the test sample and G. max provided the best estimate of nuclear DNA content in comparison to other sample tissues and reference standards. The genome size of C. tetragonoloba was detemined at 580.9±0.02Mbp (1C), while that of C. serreta and C. senegalensis was estimated at 979.6±0.02Mbp (1C) and 943.4±0.03Mbp (1C), respectively. Thus, the wild relatives harbor, nearly double the genome content of the cultivated cluster bean. Findings of this study will enrich genomic database of the legume family and can serve as the starting point for clusterbean evolutionary and genomics studies.


Assuntos
Cyamopsis/genética , Cyamopsis/ultraestrutura , Genoma de Planta , Cyamopsis/classificação , Citometria de Fluxo , Tamanho do Genoma , Hipocótilo/genética , Hipocótilo/ultraestrutura , Especificidade de Órgãos , Folhas de Planta/genética , Folhas de Planta/ultraestrutura
10.
J Appl Genet ; 59(4): 377-389, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30014258

RESUMO

Grain shape and size influence yield and consumer preferences in rice. In the present study, we characterized and mapped a short and bold grained mutant and named it as TEMS5032, as the mutant is a result of EMS-induced transition from C to T at the 5032nd bp of SRS3 gene, which is known to affect grain size in rice. The substitution led to creation of a stop codon in the motor domain of SRS3, a kinesin 13 family gene, translating into a truncated protein product. However, transcription of this gene remained unaffected in TEMS5032 compared to the wild type, N22. Further, the mutation was found to affect 13 of the 25 cell cycle-related genes as they showed differential expression with respect to N22. Based on rate of grain filling, dry matter accumulation in the endosperm and histological studies, the effect of mutation in TEMS5032 was found to be similar to a known variant, TCM758, but less severe than sar1 mutant. Sequencing of 88 rice germplasm lines in the kinesin motor domain region did not reveal the presence of this mutation, establishing it as a new variant of SRS3 gene.


Assuntos
Cinesinas/genética , Oryza/genética , Proteínas de Plantas/genética , Sementes/crescimento & desenvolvimento , Sequência de Bases , Mapeamento Cromossômico , Códon de Terminação , Ligação Genética , Genótipo , Mutação , Fases de Leitura Aberta , Fenótipo , Locos de Características Quantitativas
11.
Genes (Basel) ; 8(11)2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29120386

RESUMO

Clusterbean (Cyamopsis tetragonoloba L. Taub), is an important industrial, vegetable and forage crop. This crop owes its commercial importance to the presence of guar gum (galactomannans) in its endosperm which is used as a lubricant in a range of industries. Despite its relevance to agriculture and industry, genomic resources available in this crop are limited. Therefore, the present study was undertaken to generate RNA-Seq based transcriptome from leaf, shoot, and flower tissues. A total of 145 million high quality Illumina reads were assembled using Trinity into 127,706 transcripts and 48,007 non-redundant high quality (HQ) unigenes. We annotated 79% unigenes against Plant Genes from the National Center for Biotechnology Information (NCBI), Swiss-Prot, Pfam, gene ontology (GO) and KEGG databases. Among the annotated unigenes, 30,020 were assigned with 116,964 GO terms, 9984 with EC and 6111 with 137 KEGG pathways. At different fragments per kilobase of transcript per millions fragments sequenced (FPKM) levels, genes were found expressed higher in flower tissue followed by shoot and leaf. Additionally, we identified 8687 potential simple sequence repeats (SSRs) with an average frequency of one SSR per 8.75 kb. A total of 28 amplified SSRs in 21 clusterbean genotypes resulted in polymorphism in 13 markers with average polymorphic information content (PIC) of 0.21. We also constructed a database named 'ClustergeneDB' for easy retrieval of unigenes and the microsatellite markers. The tissue specific genes identified and the molecular marker resources developed in this study is expected to aid in genetic improvement of clusterbean for its end use.

12.
Genes (Basel) ; 8(9)2017 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-28925932

RESUMO

Clusterbean (Cyamopsis tetragonoloba L.), also known as guar, belongs to the family Leguminosae, and is an annual herbaceous legume. Guar is the main source of galactomannan for gas mining industries. In the present study, the draft chloroplast genome of clusterbean was generated and compared to some of the previously reported legume chloroplast genomes. The chloroplast genome of clusterbean is 152,530 bp in length, with a quadripartite structure consisting of large single copy (LSC) and small single copy (SSC) of 83,025 bp and 17,879 bp in size, respectively, and a pair of inverted repeats (IRs) of 25,790 bp in size. The chloroplast genome contains 114 unique genes, which includes 78 protein coding genes, 30 tRNAs, 4 rRNAs genes, and 2 pseudogenes. It also harbors a 50 kb inversion, typical of the Leguminosae family. The IR region of the clusterbean chloroplast genome has undergone an expansion, and hence, the whole rps19 gene is included in the IR, as compared to other legume plastid genomes. A total of 220 simple sequence repeats (SSRs) were detected in the clusterbean plastid genome. The analysis of the clusterbean plastid genome will provide useful insights for evolutionary, molecular and genetic engineering studies.

13.
Front Plant Sci ; 8: 934, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28634483

RESUMO

Rice (Oryza sativa L.) is one of the major grain cereals of the Indian subcontinent which face water-deficit stress for their cultivation. Seed-priming has been reported to be a useful approach to complement stress responses in plants. In the present study, seed-priming with hormonal or chemical elicitor [viz. methyl jasmonate (MJ), salicylic acid (SA), paclobutrazol (PB)] showed significant increase in total phenolic content, antioxidant activity and expression of Rice Drought-responsive (RD1 and RD2) genes (of AP2/ERF family) in contrasting rice genotypes (Nagina-22, drought-tolerant and Pusa Sugandh-5, drought-sensitive) under drought stress. However, decrease in lipid peroxidation and protein oxidation was observed not only under the stress but also under control condition in the plants raised from primed seeds. Expression analyses of RD1 and RD2 genes showed upregulated expression in the plants raised from primed seeds under drought stress. Moreover, the RD2 gene and the drought-sensitive genotype showed better response than that of the RD1 gene and the drought-tolerant genotype in combating the effects of drought stress. Among the elicitors, MJ was found to be the most effective for seed-priming, followed by PB and SA. Growth and development of the plants raised from primed seeds were found to be better under control and drought stress conditions compared to that of the plants raised from unprimed seeds under the stress. The present study suggests that seed-priming could be one of the useful approaches to be explored toward the development of simple, cost-effective and farmer-friendly technology to enhance rice yield in rainfed areas.

14.
Rice (N Y) ; 10(1): 10, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28378144

RESUMO

BACKGROUND: Increased water and labour scarcity in major rice growing areas warrants a shift towards direct seeded rice cultivation under which management of weeds is a major issue. Use of broad spectrum non-selective herbicides is an efficient means to manage weeds. Availability of rice genotypes with complete tolerance against broad-spectrum non-selective herbicides is a pre-requisite for advocating use of such herbicides. In the present study, we developed an EMS induced rice mutant, 'HTM-N22', exhibiting tolerance to a broad spectrum herbicide, 'Imazethapyr', and identified the mutations imparting tolerance to the herbicide. RESULTS: We identified a stable and true breeding rice mutant, HTM-N22 (HTM), tolerant to herbicide, Imazethapyr, from an EMS-mutagenized population of approximately 100,000 M2 plants of an upland rice variety, Nagina 22 (N22). Analysis of inheritance of herbicide tolerance in a cross between Pusa 1656-10-61/HTM showed that this trait is governed by a single dominant gene. To identify the causal gene for Imazethapyr tolerance, bulked segregant analysis (BSA) was followed using microsatellite markers flanking the three putative candidate genes viz., an Acetolactate Synthase (ALS) on chromosome 6 and two Acetohydroxy Acid Synthase (AHAS) genes, one on chromosomes 2 and another on chromosome 4. RM 6844 on chromosome 2 located 0.16 Mbp upstream of AHAS (LOC_Os02g30630) was found to co-segregate with herbicide tolerance. Cloning and sequencing of AHAS (LOC_Os02g30630) from the wild type, N22 and the mutant HTM and their comparison with reference Nipponbare sequence revealed several Single Nucleotide Polymorphisms (SNPs) in the mutant, of which eight resulted in non-synonymous mutations. Three of the eight amino acid substitutions were identical to Nipponbare and hence were not considered as causal changes. Of the five putative candidate SNPs, four were novel (at positions 30, 50, 81 and 152) while the remaining one, S627D was a previously reported mutant, known to result in Imidazolinone tolerance in rice. Of the novel ones, G152E was found to alter the hydrophobicty and abolish an N myristoylation site in the HTM compared to the WT, from reference based modeling and motif prediction studies. CONCLUSIONS: A novel mutant tolerant to the herbicide "Imazethapyr" was developed and characterized for genetic, sequence and protein level variations. This is a HTM in rice without any IPR (Intellectual Property Rights) infringements and hence can be used in rice breeding as a novel genetic stock by the public funded organizations in the country and elsewhere.

15.
BMC Genomics ; 17(1): 774, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27716126

RESUMO

BACKGROUND: Drought stress tolerance for crop improvement is an important goal worldwide. Drought is a complex trait, and it is vital to understand the complex physiological, biochemical, and molecular mechanisms of drought tolerance to tackle it effectively. Osmotic adjustment, oxidative stress management (OSM), and cell membrane stability (CMS) are major components of cellular tolerance under drought stress. In the current study, we explored the molecular basis of OSM in the drought tolerant rice variety, Nagina 22 and compared it with the popular drought sensitive rice variety, IR 64, under drought imposed at the reproductive stage, to understand how the parental polymorphisms correlate with the superiority of Nagina 22 and tolerant bulk populations under drought. RESULTS: We generated recombinant inbred lines (RIL) from contrasting parents Nagina 22 and IR 64 and focussed on spikelet fertility (SF), in terms of its correlation with OSM, which is an important component of drought tolerance in Nagina 22. Based on SF under drought stress and its correlations with other yield related traits, we used superoxide dismutase (SOD), glutathione reductase (GR), and ascorbate peroxidase (APX) activity assays to establish the relationship between SF and OSM genes in the tolerant and sensitive lines. Among the OSM enzymes studied, GR had a significant and positive correlation with single plant yield (SPY) under drought stress. GR was also positively correlated with APX but negatively so with SOD. Interestingly, none of the enzyme-morphology correlations were significant under irrigated control (IC). Through genome-wide SNP analysis of the 21 genes encoding for OSM enzymes, we identified the functional polymorphisms between the parents and identified superior alleles. By using network analysis of OSM genes in rice, we identified the genes that are central to the OSM network. CONCLUSIONS: From the biochemical and morphological data and the SNP analysis, the superiority of Nagina 22 in spikelet fertility under drought stress is because of its superior alleles for SOD (SOD2, SODCC1, SODA) and GR (GRCP2) rather than for APX, for which IR 64 had the superior allele (APX8). Nagina 22 can bypass APX8 by directly interacting with SODA. For nine of the 11 genes present in the central network, Nagina 22 had the superior alleles. We propose that Nagina 22 tolerance could mainly be because of SODA which is a reactive oxygen scavenger in mitochondria which is directly associated with spikelet fertility.


Assuntos
Adaptação Biológica/genética , Secas , Genótipo , Oryza/genética , Oryza/metabolismo , Estresse Oxidativo/genética , Regulação Enzimológica da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Endogamia , Polimorfismo de Nucleotídeo Único , Estresse Fisiológico , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
16.
AoB Plants ; 72015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25818072

RESUMO

Water stress is one of the most severe constraints to crop productivity. Plants display a variety of physiological and biochemical responses both at the cellular and whole organism level upon sensing water stress. Leaf rolling, stomatal closure, deeper root penetration, higher relative water content (RWC) and better osmotic adjustment are some of the mechanisms that plants employ to overcome water stress. In the current study, we report a mutant, enhanced water stress tolerant1 (ewst1) with enhanced water stress tolerance, identified from the ethyl methanesulfonate-induced mutant population of rice variety Nagina22 by field screening followed by withdrawal of irrigation in pots and hydroponics (PEG 6000). Though ewst1 was morphologically similar to the wild type (WT) for 35 of the 38 morphological descriptors (except chalky endosperm/expression of white core, decorticated grain colour and grain weight), it showed enhanced germination in polyethylene glycol-infused medium. It exhibited increase in maximum root length without any significant changes in its root weight, root volume and total root number on crown when compared with the WT under stress in PVC tube experiment. It also showed better performance for various physiological parameters such as RWC, cell membrane stability and chlorophyll concentration upon water stress in a pot experiment. Root anatomy and stomatal microscopic studies revealed changes in the number of xylem and phloem cells, size of central meta-xylem and number of closed stomata in ewst1. Comparative genome-wide transcriptome analysis identified genes related to exocytosis, secondary metabolites, tryptophan biosynthesis, protein phosphorylation and other signalling pathways to be playing a role in enhanced response to water stress in ewst1. The possible involvement of a candidate gene with respect to the observed morpho-physiological and transcriptional changes and its role in stress tolerance are discussed. The mutant identified and characterized in this study will be useful for further dissection of water stress tolerance in rice.

17.
DNA Res ; 22(2): 133-45, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25627243

RESUMO

Salinity tolerance in rice is highly desirable to sustain production in areas rendered saline due to various reasons. It is a complex quantitative trait having different components, which can be dissected effectively by genome-wide association study (GWAS). Here, we implemented GWAS to identify loci controlling salinity tolerance in rice. A custom-designed array based on 6,000 single nucleotide polymorphisms (SNPs) in as many stress-responsive genes, distributed at an average physical interval of <100 kb on 12 rice chromosomes, was used to genotype 220 rice accessions using Infinium high-throughput assay. Genetic association was analysed with 12 different traits recorded on these accessions under field conditions at reproductive stage. We identified 20 SNPs (loci) significantly associated with Na(+)/K(+) ratio, and 44 SNPs with other traits observed under stress condition. The loci identified for various salinity indices through GWAS explained 5-18% of the phenotypic variance. The region harbouring Saltol, a major quantitative trait loci (QTLs) on chromosome 1 in rice, which is known to control salinity tolerance at seedling stage, was detected as a major association with Na(+)/K(+) ratio measured at reproductive stage in our study. In addition to Saltol, we also found GWAS peaks representing new QTLs on chromosomes 4, 6 and 7. The current association mapping panel contained mostly indica accessions that can serve as source of novel salt tolerance genes and alleles. The gene-based SNP array used in this study was found cost-effective and efficient in unveiling genomic regions/candidate genes regulating salinity stress tolerance in rice.


Assuntos
Herança Multifatorial , Oryza/genética , Locos de Características Quantitativas , Tolerância ao Sal/genética , Cromossomos de Plantas , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA