Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 4455, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796479

RESUMO

Lipids are the most abundant but poorly explored components of the human brain. Here, we present a lipidome map of the human brain comprising 75 regions, including 52 neocortical ones. The lipidome composition varies greatly among the brain regions, affecting 93% of the 419 analyzed lipids. These differences reflect the brain's structural characteristics, such as myelin content (345 lipids) and cell type composition (353 lipids), but also functional traits: functional connectivity (76 lipids) and information processing hierarchy (60 lipids). Combining lipid composition and mRNA expression data further enhances functional connectivity association. Biochemically, lipids linked with structural and functional brain features display distinct lipid class distribution, unsaturation extent, and prevalence of omega-3 and omega-6 fatty acid residues. We verified our conclusions by parallel analysis of three adult macaque brains, targeted analysis of 216 lipids, mass spectrometry imaging, and lipidome assessment of sorted murine neurons.


Assuntos
Encéfalo , Lipidômica , Lipídeos , Humanos , Animais , Encéfalo/metabolismo , Camundongos , Adulto , Lipídeos/química , Lipídeos/análise , Masculino , Metabolismo dos Lipídeos , Macaca , Neurônios/metabolismo , Feminino , Ácidos Graxos Ômega-3/metabolismo , Ácidos Graxos Ômega-6/metabolismo , Bainha de Mielina/metabolismo , Pessoa de Meia-Idade
2.
EBioMedicine ; 101: 105027, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38418263

RESUMO

BACKGROUND: Cardiomyopathy is a clinically and genetically heterogeneous heart condition that can lead to heart failure and sudden cardiac death in childhood. While it has a strong genetic basis, the genetic aetiology for over 50% of cardiomyopathy cases remains unknown. METHODS: In this study, we analyse the characteristics of tandem repeats from genome sequence data of unrelated individuals diagnosed with cardiomyopathy from Canada and the United Kingdom (n = 1216) and compare them to those found in the general population. We perform burden analysis to identify genomic and epigenomic features that are impacted by rare tandem repeat expansions (TREs), and enrichment analysis to identify functional pathways that are involved in the TRE-associated genes in cardiomyopathy. We use Oxford Nanopore targeted long-read sequencing to validate repeat size and methylation status of one of the most recurrent TREs. We also compare the TRE-associated genes to those that are dysregulated in the heart tissues of individuals with cardiomyopathy. FINDINGS: We demonstrate that tandem repeats that are rarely expanded in the general population are predominantly expanded in cardiomyopathy. We find that rare TREs are disproportionately present in constrained genes near transcriptional start sites, have high GC content, and frequently overlap active enhancer H3K27ac marks, where expansion-related DNA methylation may reduce gene expression. We demonstrate the gene silencing effect of expanded CGG tandem repeats in DIP2B through promoter hypermethylation. We show that the enhancer-associated loci are found in genes that are highly expressed in human cardiomyocytes and are differentially expressed in the left ventricle of the heart in individuals with cardiomyopathy. INTERPRETATION: Our findings highlight the underrecognized contribution of rare tandem repeat expansions to the risk of cardiomyopathy and suggest that rare TREs contribute to ∼4% of cardiomyopathy risk. FUNDING: Government of Ontario (RKCY), The Canadian Institutes of Health Research PJT 175329 (RKCY), The Azrieli Foundation (RKCY), SickKids Catalyst Scholar in Genetics (RKCY), The University of Toronto McLaughlin Centre (RKCY, SM), Ted Rogers Centre for Heart Research (SM), Data Sciences Institute at the University of Toronto (SM), The Canadian Institutes of Health Research PJT 175034 (SM), The Canadian Institutes of Health Research ENP 161429 under the frame of ERA PerMed (SM, RL), Heart and Stroke Foundation of Ontario & Robert M Freedom Chair in Cardiovascular Science (SM), Bitove Family Professorship of Adult Congenital Heart Disease (EO), Canada Foundation for Innovation (SWS, JR), Canada Research Chair (PS), Genome Canada (PS, JR), The Canadian Institutes of Health Research (PS).


Assuntos
Cardiomiopatias , Cardiopatias Congênitas , Humanos , Adulto , Cardiopatias Congênitas/genética , Sequências de Repetição em Tandem/genética , Metilação de DNA , Cardiomiopatias/genética , Ontário , Proteínas do Tecido Nervoso/genética
3.
Mol Psychiatry ; 28(1): 475-482, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36380236

RESUMO

Tandem repeat expansions (TREs) are associated with over 60 monogenic disorders and have recently been implicated in complex disorders such as cancer and autism spectrum disorder. The role of TREs in schizophrenia is now emerging. In this study, we have performed a genome-wide investigation of TREs in schizophrenia. Using genome sequence data from 1154 Swedish schizophrenia cases and 934 ancestry-matched population controls, we have detected genome-wide rare (<0.1% population frequency) TREs that have motifs with a length of 2-20 base pairs. We find that the proportion of individuals carrying rare TREs is significantly higher in the schizophrenia group. There is a significantly higher burden of rare TREs in schizophrenia cases than in controls in genic regions, particularly in postsynaptic genes, in genes overlapping brain expression quantitative trait loci, and in brain-expressed genes that are differentially expressed between schizophrenia cases and controls. We demonstrate that TRE-associated genes are more constrained and primarily impact synaptic and neuronal signaling functions. These results have been replicated in an independent Canadian sample that consisted of 252 schizophrenia cases of European ancestry and 222 ancestry-matched controls. Our results support the involvement of rare TREs in schizophrenia etiology.


Assuntos
Transtorno do Espectro Autista , Esquizofrenia , Humanos , Esquizofrenia/genética , Estudo de Associação Genômica Ampla , Canadá , Frequência do Gene , Predisposição Genética para Doença/genética
4.
Mol Psychiatry ; 27(9): 3692-3698, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35546631

RESUMO

Tandem repeat expansions (TREs) can cause neurological diseases but their impact in schizophrenia is unclear. Here we analyzed genome sequences of adults with schizophrenia and found that they have a higher burden of TREs that are near exons and rare in the general population, compared with non-psychiatric controls. These TREs are disproportionately found at loci known to be associated with schizophrenia from genome-wide association studies, in individuals with clinically-relevant genetic variants at other schizophrenia loci, and in families where multiple individuals have schizophrenia. We showed that rare TREs in schizophrenia may impact synaptic functions by disrupting the splicing process of their associated genes in a loss-of-function manner. Our findings support the involvement of genome-wide rare TREs in the polygenic nature of schizophrenia.


Assuntos
Esquizofrenia , Adulto , Humanos , Esquizofrenia/genética , Esquizofrenia/epidemiologia , Estudo de Associação Genômica Ampla , Predisposição Genética para Doença/genética , Herança Multifatorial/genética , Sequências de Repetição em Tandem , Polimorfismo de Nucleotídeo Único/genética
5.
BMC Evol Biol ; 20(1): 70, 2020 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-32560628

RESUMO

BACKGROUND: Lipids contained in milk are an essential source of energy and structural materials for a growing neonate. Furthermore, lipids' long-chain unsaturated fatty acid residues can directly participate in neonatal tissue formation. Here, we used untargeted mass spectrometric measurements to assess milk lipid composition in seven mammalian species: humans, two macaque species, cows, goats, yaks, and pigs. RESULTS: Analysis of the main milk lipid class, triacylglycerides (TAGs), revealed species-specific quantitative differences in the composition of fatty acid residues for each of seven species. Overall, differences in milk lipid composition reflect evolutionary distances among species, with each species group demonstrating specific lipidome features. Among them, human milk contained more medium and long-chain unsaturated fatty acids compared to other species, while pig milk was the most distinct, featuring the highest proportion of long-chain polyunsaturated fatty acids. CONCLUSIONS: We show that milk lipidome composition is dynamic across mammalian species, changed extensively in pigs, and contains features particular to humans.


Assuntos
Lipidômica , Leite/metabolismo , Animais , Bovinos , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Feminino , Haplorrinos , Humanos , Lactação , Especificidade da Espécie , Suínos
6.
Proc Natl Acad Sci U S A ; 116(11): 4940-4945, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30796188

RESUMO

Genes coding for small peptides have been frequently misannotated as long noncoding RNA (lncRNA) genes. Here we have demonstrated that one such transcript is translated into a 56-amino-acid-long peptide conserved in chordates, corroborating the work published while this manuscript was under review. The Mtln peptide could be detected in mitochondria of mouse cell lines and tissues. In line with its mitochondrial localization, lack of the Mtln decreases the activity of mitochondrial respiratory chain complex I. Unlike the integral components and assembly factors of NADH:ubiquinone oxidoreductase, Mtln does not alter its enzymatic activity directly. Interaction of Mtln with NADH-dependent cytochrome b5 reductase stimulates complex I functioning most likely by providing a favorable lipid composition of the membrane. Study of Mtln illuminates the importance of small peptides, whose genes might frequently be misannotated as lncRNAs, for the control of vitally important cellular processes.


Assuntos
Metabolismo dos Lipídeos , Mitocôndrias/metabolismo , Peptídeos/metabolismo , RNA Longo não Codificante/metabolismo , Sequência de Aminoácidos , Animais , Respiração Celular , Citosol/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Camundongos , NAD/metabolismo , Células NIH 3T3 , Consumo de Oxigênio , Fosfolipídeos/metabolismo , RNA Longo não Codificante/genética , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...