Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202402214, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745375

RESUMO

Aluminum oxide (Al2O3) nanopowder is spin-coated onto both sides of commercial polypropene separator to create artificial solid-electrolyte interphase (SEI) and artificial cathode electrolyte interface (CEI) in potassium metal batteries (KMBs). This significantly enhances the stability, including of KMBs with Prussian Blue (PB) cathodes. For example, symmetric cells are stable after 1,000 cycles at 0.5 mA/cm2-0.5 mAh/cm2 and 3.0 mA/cm2-0.5 mAh/cm2. Alumina modified separators promote electrolyte wetting and increase ionic conductivity (0.59 vs. 0.2 mS/cm) and transference number (0.81 vs. 0.23). Cryo-stage focused ion beam (cryo-FIB) analysis of cycled modified anode demonstrates dense and planar electrodeposits, versus unmodified baseline consisting of metal filaments (dendrites) interspersed with pores and SEI. Alumina-modified CEI also suppresses elemental Fe crossover and reduces cathode cracking. Mesoscale modeling of metal - SEI interactions captures crucial role of intrinsic heterogeneities, illustrating how artificial SEI affects reaction current distribution, conductivity and morphological stability.

2.
Adv Mater ; 36(1): e2301477, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37078970

RESUMO

This topical review focuses on the distinct role of carbon support coordination environment of single-atom catalysts (SACs) for electrocatalysis. The article begins with an overview of atomic coordination configurations in SACs, including a discussion of the advanced characterization techniques and simulation used for understanding the active sites. A summary of key electrocatalysis applications is then provided. These processes are oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), nitrogen reduction reaction (NRR), and carbon dioxide reduction reaction (CO2 RR). The review then shifts to modulation of the metal atom-carbon coordination environments, focusing on nitrogen and other non-metal coordination through modulation at the first coordination shell and modulation in the second and higher coordination shells. Representative case studies are provided, starting with the classic four-nitrogen-coordinated single metal atom (MN4 ) based SACs. Bimetallic coordination models including homo-paired and hetero-paired active sites are also discussed, being categorized as emerging approaches. The theme of the discussions is the correlation between synthesis methods for selective doping, the carbon structure-electron configuration changes associated with the doping, the analytical techniques used to ascertain these changes, and the resultant electrocatalysis performance. Critical unanswered questions as well as promising underexplored research directions are identified.

3.
Angew Chem Int Ed Engl ; 62(23): e202300943, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-36893078

RESUMO

Combined synchrotron X-ray nanotomography imaging, cryogenic electron microscopy (cryo-EM) and modeling elucidate how potassium (K) metal-support energetics influence electrodeposit microstructure. Three model supports are employed: O-functionalized carbon cloth (potassiophilic, fully-wetted), non-functionalized cloth and Cu foil (potassiophobic, nonwetted). Nanotomography and focused ion beam (cryo-FIB) cross-sections yield complementary three-dimensional (3D) maps of cycled electrodeposits. Electrodeposit on potassiophobic support is a triphasic sponge, with fibrous dendrites covered by solid electrolyte interphase (SEI) and interspersed with nanopores (sub-10 nm to 100 nm scale). Lage cracks and voids are also a key feature. On potassiophilic support, the deposit is dense and pore-free, with uniform surface and SEI morphology. Mesoscale modeling captures the critical role of substrate-metal interaction on K metal film nucleation and growth, as well as the associated stress state.

4.
Adv Mater ; 35(8): e2206762, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36445936

RESUMO

A stable anode-free all-solid-state battery (AF-ASSB) with sulfide-based solid-electrolyte (SE) (argyrodite Li6 PS5 Cl) is achieved by tuning wetting of lithium metal on "empty" copper current-collector. Lithiophilic 1 µm Li2 Te is synthesized by exposing the collector to tellurium vapor, followed by in situ Li activation during the first charge. The Li2 Te significantly reduces the electrodeposition/electrodissolution overpotentials and improves Coulombic efficiency (CE). During continuous electrodeposition experiments using half-cells (1 mA cm-2 ), the accumulated thickness of electrodeposited Li on Li2 Te-Cu is more than 70 µm, which is the thickness of the Li foil counter-electrode. Full AF-ASSB with NMC811 cathode delivers an initial CE of 83% at 0.2C, with a cycling CE above 99%. Cryogenic focused ion beam (Cryo-FIB) sectioning demonstrates uniform electrodeposited metal microstructure, with no signs of voids or dendrites at the collector-SE interface. Electrodissolution is uniform and complete, with Li2 Te remaining structurally stable and adherent. By contrast, an unmodified Cu current-collector promotes inhomogeneous Li electrodeposition/electrodissolution, electrochemically inactive "dead metal," dendrites that extend into SE, and thick non-uniform solid electrolyte interphase (SEI) interspersed with pores. Density functional theory (DFT) and mesoscale calculations provide complementary insight regarding nucleation-growth behavior. Unlike conventional liquid-electrolyte metal batteries, the role of current collector/support lithiophilicity has not been explored for emerging AF-ASSBs.

5.
ACS Nano ; 16(7): 11102-11114, 2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35758405

RESUMO

The shuttling of soluble lithium polysulfides (LiPS) and the sluggish Li-S conversion kinetics are two main barriers toward the practical application of lithium-sulfur batteries (LSBs). Herein, we propose the addition of copper selenide nanoparticles at the cathode to trap LiPS and accelerate the Li-S reaction kinetics. Using both computational and experimental results, we demonstrate the crystal phase and concentration of copper vacancies to control the electronic structure of the copper selenide, its affinity toward LiPS chemisorption, and its electrical conductivity. The adjustment of the defect density also allows for tuning the electrochemically active sites for the catalytic conversion of polysulfide. The optimized S/Cu1.8Se cathode efficiently promotes and stabilizes the sulfur electrochemistry, thus improving significantly the LSB performance, including an outstanding cyclability over 1000 cycles at 3 C with a capacity fading rate of just 0.029% per cycle, a superb rate capability up to 5 C, and a high areal capacity of 6.07 mAh cm-2 under high sulfur loading. Overall, the present work proposes a crystal phase and defect engineering strategy toward fast and durable sulfur electrochemistry, demonstrating great potential in developing practical LSBs.

6.
Angew Chem Int Ed Engl ; 61(29): e202203409, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35583391

RESUMO

In this work, the Na-K liquid alloy with a charge selective interfacial layer is developed to achieve an impressively long cycling life with small overpotential on a sodium super-ionic conductor solid-state electrolyte (NASICON SSE). With this unique multi-cation system as the platform, we further propose a unique model that contains a chemical decomposition domain and a kinetic decomposition domain for the interfacial stability model. Based on this model, two charge selection mechanisms are proposed with dynamic chemical kinetic equilibrium and electrochemical kinetics as the manners of control, respectively, and both are validated by the electrochemical measurements with microscopic and spectroscopic characterizations. This study provides an effective design for high-energy-density solid-state battery with alkali Na-K anode, but also presents a novel approach to understand the interfacial chemical processes that could inspire and guide future designs.

7.
Adv Mater ; 34(26): e2106572, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35451133

RESUMO

This is the first report of molybdenum carbide-based electrocatalyst for sulfur-based sodium-metal batteries. MoC/Mo2 C is in situ grown on nitrogen-doped carbon nanotubes in parallel with formation of extensive nanoporosity. Sulfur impregnation (50 wt% S) results in unique triphasic architecture termed molybdenum carbide-porous carbon nanotubes host (MoC/Mo2 C@PCNT-S). Quasi-solid-state phase transformation to Na2 S is promoted in carbonate electrolyte, with in situ time-resolved Raman, X-ray photoelectron spectroscopy, and optical analyses demonstrating minimal soluble polysulfides. MoC/Mo2 C@PCNT-S cathodes deliver among the most promising rate performance characteristics in the literature, achieving 987 mAh g-1 at 1 A g-1 , 818 mAh g-1 at 3 A g-1 , and 621 mAh g-1 at 5 A g-1 . The cells deliver superior cycling stability, retaining 650 mAh g-1 after 1000 cycles at 1.5 A g-1 , corresponding to 0.028% capacity decay per cycle. High mass loading cathodes (64 wt% S, 12.7 mg cm-2 ) also show cycling stability. Density functional theory demonstrates that formation energy of Na2 Sx (1 ≤ x ≤ 4) on surface of MoC/Mo2 C is significantly lowered compared to analogous redox in liquid. Strong binding of Na2 Sx (1 ≤ x ≤ 4) on MoC/Mo2 C surfaces results from charge transfer between the sulfur and Mo sites on carbides' surface.

8.
Chem Rev ; 122(9): 8053-8125, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35349271

RESUMO

Alkali metal batteries based on lithium, sodium, and potassium anodes and sulfur-based cathodes are regarded as key for next-generation energy storage due to their high theoretical energy and potential cost effectiveness. However, metal-sulfur batteries remain challenged by several factors, including polysulfides' (PSs) dissolution, sluggish sulfur redox kinetics at the cathode, and metallic dendrite growth at the anode. Functional separators and interlayers are an innovative approach to remedying these drawbacks. Here we critically review the state-of-the-art in separators/interlayers for cathode and anode protection, covering the Li-S and the emerging Na-S and K-S systems. The approaches for improving electrochemical performance may be categorized as one or a combination of the following: Immobilization of polysulfides (cathode); catalyzing sulfur redox kinetics (cathode); introduction of protective layers to serve as an artificial solid electrolyte interphase (SEI) (anode); and combined improvement in electrolyte wetting and homogenization of ion flux (anode and cathode). It is demonstrated that while the advances in Li-S are relatively mature, less progress has been made with Na-S and K-S due to the more challenging redox chemistry at the cathode and increased electrochemical instability at the anode. Throughout these sections there is a complementary discussion of functional separators for emerging alkali metal systems based on metal-selenium and the metal-selenium sulfide. The focus then shifts to interlayers and artificial SEI/cathode electrolyte interphase (CEI) layers employed to stabilize solid-state electrolytes (SSEs) in metal-sulfur solid-state batteries (SSBs). The discussion of SSEs focuses on inorganic electrolytes based on Li- and Na-based oxides and sulfides but also touches on some hybrid systems with an inorganic matrix and a minority polymer phase. The review then moves to practical considerations for functional separators, including scaleup issues and Li-S technoeconomics. The review concludes with an outlook section, where we discuss emerging mechanics, spectroscopy, and advanced electron microscopy (e.g. cryo-transmission electron microscopy (cryo-TEM) and cryo-focused ion beam (cryo-FIB))-based approaches for analysis of functional separator structure-battery electrochemical performance interrelations. Throughout the review we identify the outstanding open scientific and technological questions while providing recommendations for future research topics.

9.
Adv Mater ; 34(1): e2106005, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34679207

RESUMO

Repeated cold rolling and folding is employed to fabricate a metallurgical composite of sodium-antimony-telluride Na2 (Sb2/6 Te3/6 Vac1/6 ) dispersed in electrochemically active sodium metal, termed "NST-Na." This new intermetallic has a vacancy-rich thermodynamically stable face-centered-cubic structure and enables state-of-the-art electrochemical performance in widely employed carbonate and ether electrolytes. NST-Na achieves 100% depth-of-discharge (DOD) in 1 m NaPF6 in G2, with 15 mAh cm-2 at 1 mA cm-2 and Coulombic efficiency (CE) of 99.4%, for 1000 h of plating/stripping. Sodium-metal batteries (SMBs) with NST-Na and Na3 V2 (PO4 )3  (NVP) or sulfur cathodes give significantly improved energy, cycling, and CE (>99%). An anode-free battery with NST collector and NVP obtains 0.23% capacity decay per cycle. Imaging and tomography using conventional and cryogenic microscopy (Cryo-EM) indicate that the sodium metal fills the open space inside the self-supporting sodiophilic NST skeleton, resulting in dense (pore-free and solid electrolyte interphase (SEI)-free) metal deposits with flat surfaces. The baseline Na deposit consists of filament-like dendrites and "dead metal", intermixed with pores and SEI. Density functional theory calculations show that the uniqueness of NST lies in the thermodynamic stability of the Na atoms (rather than clusters) on its surface that leads to planar wetting, and in its own stability that prevents decomposition during cycling.

10.
Adv Mater ; 34(7): e2105855, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34738260

RESUMO

This is the first report of a multifunctional separator for potassium-metal batteries (KMBs). Double-coated tape-cast microscale AlF3 on polypropylene (AlF3 @PP) yields state-of-the-art electrochemical performance: symmetric cells are stable after 1000 cycles (2000 h) at 0.5 mA cm-2 and 0.5 mAh cm-2 , with 0.042 V overpotential. Stability is maintained at 5.0 mA cm-2 for 600 cycles (240 h), with 0.138 V overpotential. Postcycled plated surface is dendrite-free, while stripped surface contains smooth solid electrolyte interphase (SEI). Conventional PP cells fail rapidly, with dendrites at plating, and "dead metal" and SEI clumps at stripping. Potassium hexacyanoferrate(III) cathode KMBs with AlF3 @PP display enhanced capacity retention (91% at 100 cycles vs 58%). AlF3 partially reacts with K to form an artificial SEI containing KF, AlF3 , and Al2 O3 phases. The AlF3 @PP promotes complete electrolyte wetting and enhances uptake, improves ion conductivity, and increases ion transference number. The higher of K+ transference number is ascribed to the strong interaction between AlF3 and FSI- anions, as revealed through 19 F NMR. The enhancement in wetting and performance is general, being demonstrated with ester- and ether-based solvents, with K-, Na-, or Li- salts, and with different commercial separators. In full batteries, AlF3 prevents Fe crossover and cycling-induced cathode pulverization.

11.
Angew Chem Int Ed Engl ; 60(50): 26158-26166, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34569135

RESUMO

A strategy for modifying the structure of solid-state electrolytes (SSEs) to reduce the cation diffusion activation energy is presented. Two heavily W-doped sodium thioantimonate SSEs, Na2.895 W0.3 Sb0.7 S4 and Na2.7 W0.3 Sb0.7 S4 are designed, both exhibiting exceptionally low activation energy and enhanced room temperature (RT) ionic conductivity; 0.09 eV, 24.2 mS/cm and 0.12 eV, 14.5 mS/cm. At -15 °C the Na2.895 W0.3 Sb0.7 S4 displays a total ionic conductivity of 5.5 mS/cm. The 30 % W content goes far beyond the 10-12 % reported in the prior studies, and results in novel pseudo-cubic or orthorhombic structures. Calculations reveal that these properties result from a combination of multiple diffusion mechanisms, including vacancy defects, strongly correlated modes and excessive Na-ions. An all-solid-state battery (ASSB) using Na2.895 W0.3 Sb0.7 S4 as the primary SSE and a sodium sulfide (Na2 S) cathode achieves a reversible capacity of 400 mAh g-1 .

12.
Chem Soc Rev ; 50(12): 6734-6789, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-33955977

RESUMO

Electrochemical capacitors charge and discharge more rapidly than batteries over longer cycles, but their practical applications remain limited due to their significantly lower energy densities. Pseudocapacitors and hybrid capacitors have been developed to extend Ragone plots to higher energy density values, but they are also limited by the insufficient breadth of options for electrode materials, which require materials that store alkali metal cations such as Li+ and Na+. Herein, we report a comprehensive and systematic review of emerging anion storage materials for performance- and functionality-oriented applications in electrochemical and battery-capacitor hybrid devices. The operating principles and types of dual-ion and whole-anion storage in electrochemical and hybrid capacitors are addressed along with the classification, thermodynamic and kinetic aspects, and associated interfaces of anion storage materials in various aqueous and non-aqueous electrolytes. The charge storage mechanism, structure-property correlation, and electrochemical features of anion storage materials are comprehensively discussed. The recent progress in emerging anion storage materials is also discussed, focusing on high-performance applications, such as dual-ion- and whole-anion-storing electrochemical capacitors in a symmetric or hybrid manner, and functional applications including micro- and flexible capacitors, desalination, and salinity cells. Finally, we present our perspective on the current impediments and future directions in this field.

13.
Langmuir ; 37(6): 2029-2039, 2021 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-33524260

RESUMO

We present comprehensive first-principles density functional theory (DFT) analyses of the interfacial strength and bonding mechanisms between crystalline and amorphous selenium (Se) with graphene (Gr), a promising duo for energy storage applications. Comparative interface analyses are presented on amorphous silicon (Si) with graphene and crystalline Se with a conventional aluminum (Al) current collector. The interface strengths of monoclinic Se (0.43 J m-2) and amorphous Si with graphene (0.41 J m-2) are similar in magnitude. While both materials (c-Se, a-Si) are bonded loosely by van der Waals (vdW) forces over graphene, interfacial electron exchange is higher for a-Si/graphene. This is further elaborated by comparing the potential energy step and charge transfer (Δq) across the graphene interfaces. The interface strength of c-Se on a 3D Al current collector is higher (0.99 J m-2), suggesting a stronger adhesion. Amorphous Se with graphene has comparable interface strength (0.34 J m-2), but electron exchange in this system is slightly distinct from monoclinic Se. The electronic characteristics and bonding mechanisms are different for monoclinic and amorphous Se with graphene as they activate graphene via surface charge doping divergently. The implications of these interfacial physicochemical attributes on electrode performance have been discussed. Our findings highlight the complex electrochemical phenomena in Se interfaced with graphene, which may profoundly differ from their "free" counterparts.

14.
ACS Nano ; 15(1): 1652-1665, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33369384

RESUMO

It is a major challenge to achieve fast charging and high reversible capacity in potassium ion storing carbons. Here, we synthesized sulfur-rich graphene nanoboxes (SGNs) by one-step chemical vapor deposition to deliver exceptional rate and cyclability performance as potassium ion battery and potassium ion capacitor (PIC) anodes. The SGN electrode exhibits a record reversible capacity of 516 mAh g-1 at 0.05 A g-1, record fast charge capacity of 223 mA h g-1 at 1 A g-1, and exceptional stability with 89% capacity retention after 1000 cycles. Additionally, the SGN-based PIC displays highly favorable Ragone chart characteristics: 112 Wh kg-1at 505 W kg-1 and 28 Wh kg-1 at 14618 W kg-1 with 92% capacity retention after 6000 cycles. X-ray photoelectron spectroscopy analysis illustrates a charge storage sequence based primarily on reversible ion binding at the structural-chemical defects in the carbon and the reversible formation of K-S-C and K2S compounds. Transmission electron microscopy analysis demonstrates reversible dilation of graphene due to ion intercalation, which is a secondary source of capacity at low voltage. This intercalation mechanism is shown to be stable even at cycle 1000. Galvanostatic intermittent titration technique analysis yields diffusion coefficients from 10-10 to 10-12 cm2 s-1, an order of magnitude higher than S-free carbons. The direct electroanalytic/analytic comparison indicates that chemically bound sulfur increases the number of reversible ion bonding sites, promotes reaction-controlled over diffusion-controlled kinetics, and stabilizes the solid electrolyte interphase. It is also demonstrated that the initial Coulombic efficiency can be significantly improved by switching from a standard carbonate-based electrolyte to an ether-based one.

15.
Adv Mater ; 32(49): e2002908, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33135265

RESUMO

This is the first report of successful potassium metal battery anode cycling with an aluminum-based rather than copper-based current collector. Dendrite-free plating/stripping is achieved through improved electrolyte wetting, employing an aluminum-powder-coated aluminum foil "Al@Al," without any modification of the support surface chemistry or electrolyte additives. The reservoir-free Al@Al half-cell is stable at 1000 cycles (1950 h) at 0.5 mA cm-2 , with 98.9% cycling Coulombic efficiency and 0.085 V overpotential. The pre-potassiated cell is stable through a wide current range, including 130 cycles (2600 min) at 3.0 mA cm-2 , with 0.178 V overpotential. Al@Al is fully wetted by a 4 m potassium bis(fluorosulfonyl)imide-dimethoxyethane electrolyte (θCA  = 0°), producing a uniform solid electrolyte interphase (SEI) during the initial galvanostatic formation cycles. On planar aluminum foil with a nearly identical surface oxide, the electrolyte wets poorly (θCA  = 52°). This correlates with coarse irregular SEI clumps at formation, 3D potassium islands with further SEI coarsening during plating/stripping, possibly dead potassium metal on stripped surfaces, and rapid failure. The electrochemical stability of Al@Al versus planar Al is not related to differences in potassiophilicity (nearly identical) as obtained from thermal wetting experiments. Planar Cu foils are also poorly electrolyte-wetted and become dendritic. The key fundamental takeaway is that the incomplete electrolyte wetting of collectors results in early onset of SEI instability and dendrites.

16.
Chem Commun (Camb) ; 56(94): 14889-14892, 2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33179650

RESUMO

We synthesized Co2P nanoparticle encapsulated N-doped carbon nanocages through one-step carbonization-phosphidation of ZIF-67. As potassium ion battery (KIB, PIB) anodes, the Co2P@NCCs display state-of-the-art electrochemical performance, including the most favorable fast charge characteristics reported. The single-nanometer thick carbon cage yields rapid solid-state K-ion diffusion and prevents aggregation/pulverization of 40 nm cobalt phosphide.

17.
Chem Soc Rev ; 49(20): 7284-7300, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-32939527

RESUMO

This tutorial review explains the emerging understanding of the surface and bulk chemistry - electrochemical performance relations in anode supports (aka secondary current collectors, substrates, templates, hosts) for lithium, sodium and potassium metal batteries (LMBs, SMBs or NMBs, and KMBs or PMBs). In relation to each section, the possible future research directions that may yield both new insight and improved cycling behavior are explored. Representative case studies from Li, Na and K metal anode literature are discussed. The tutorial starts with an overview of the solid electrolyte interphase (SEI), covering both the "classic" understanding of the SEI structure and the "modern" insights obtained by site-specific cryogenic stage TEM analysis. Next, the multiple roles of supports in promoting cycling stability are detailed. Without an optimized support architecture, the metal-electrolyte interface becomes geometrically unstable at a lower current density and cycle number. Taking into consideration the available literature on LMBs, SMBs and KMBs, it is concluded that effective architectures are geometrically complex and electrochemically lithiophilic, sodiophilic or potassiophilic, so as to promote conformal electrochemical wetting of the metal during plating/stripping. One way that philicity is achieved is through support oxygen surface chemistry, which yields a reversibly reactive metal-support interface. Examples of this include the well-known oxygen-carbon moieties in reduced graphene oxide (rGO), as well as classic ion battery reversible conversion reaction oxides such as SnO2. Unreactive surfaces lead to dewetted island growth of the metal, which is a precursor to dendrites, and possibly to non-uniform dissolution. Surveying the literature on various Li, Na and K metal supports, it is concluded that the key bulk thermodynamic property that will predict electrochemical wetting behavior is the enthalpy of infinite solution (ΔsolH∞) of the metal (solute) into the support (solvent). Large and negative ΔsolH∞ promotes uniform metal wetting on the support surface, corresponding to relatively low plating overpotential. Positive ΔsolH∞ promotes dewetted islands and a relatively high overpotential. This simple rule explains a broad range of studies on Li, Na and K metal - support interactions, including the previously reported correlation between mutual solubility and wetting.

18.
ACS Appl Mater Interfaces ; 12(28): 31564-31574, 2020 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-32551467

RESUMO

A new approach is employed to boost the electrochemical kinetics and stability of vanadium oxygen hydrate (VOH, V2O5·nH2O) employed for aqueous zinc-ion battery (ZIB) cathodes. The methodology is based on electrically conductive polyaniline (PANI) intercalated-exfoliated VOH, achieved by preintercalation of an aniline monomer and its in situ polymerization within the oxide interlayers. The resulting graphene-like PANI-VOH nanosheets possess a greatly boosted reaction-controlled contribution to the total charge storage capacity, resulting in more material undergoing the reversible V5+ to V3+ redox reaction. The PANI-VOH electrode obtains an impressive capacity of 323 mAh g-1 at 1 A g-1, and state-of-the-art cycling stability at 80% capacity retention after 800 cycles. Because of the facile redox kinetics, the PANI-VOH ZIB obtains uniquely promising specific energy-specific power combinations: an energy of 216 Wh kg-1 is achieved at 252 W kg-1, while 150 Wh kg-1 is achieved at 3900 W kg-1. Electrochemical impedance spectroscopy (EIS) and galvanostatic intermittent titration technique (GITT) analyses indicate that with PANI-VOH nanosheets, there is a simultaneous decrease in the charge transfer resistance and a boost in the diffusion coefficient of Zn2+ (by a factor of 10-100) vs the VOH baseline. The strategy of employing PANI for combined intercalation-exfoliation may provide a broadly applicable approach for improving the performance in a range of oxide-based energy storage materials.

19.
J Phys Chem Lett ; 11(12): 4608-4617, 2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32441937

RESUMO

The capacity-voltage fade phenomenon in lithium iron phosphate (LiFePO4) lithium ion battery cathodes is not understood. We provide its first atomic-scale description, employing advanced transmission electron microscopy combined with electroanalysis and first-principles simulations. Cycling causes near-surface (∼30 nm) amorphization of the Olivine crystal structure, with isolated amorphous regions also being present deeper in the bulk crystal. Within this amorphous shell, some of the Fe2+ is transformed into Fe3+. Simulations predict that amorphization significantly impedes ion diffusion in LiFePO4 and even more severely in FePO4. The most significant barrier for ion transfer will be in the partially delithiated state due to the presence of FePO4, resulting in the inability to extract the remaining Li+ and the observed capacity fade. The pyrrole coating suppresses the dissolution of Fe and allows for extended retention of the Olivine structure. It also reduces the level of crossover of iron to the metal anode and stabilizes its solid electrolyte interphase, thus also contributing to the half-cell cycling stability.

20.
Acc Chem Res ; 53(6): 1161-1175, 2020 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-32466644

RESUMO

ConspectusPotassium metal serves as the anode in emerging potassium metal batteries (KMBs). It also serves as the counter electrode for potassium ion battery (KIB) half-cells, with its reliable performance being critical for assessing the working electrode material. This first-of-its-kind critical Account focuses on the dual challenge of controlling the potassium metal-substrate and the potassium metal-electrolyte interface so as to prevent dendrites. The discussion begins with a comparison of the physical and chemical properties of K metal anodes versus the much oft studied Li and Na metal anodes. Based on established descriptions for root causes of dendrites, the problem should be less severe for K than for Li or Na, while in fact the opposite is observed. The key reason that the K metal surface rapidly becomes dendritic in common electrolytes is its unstable solid electrolyte interphase (SEI). An unstable SEI layer is defined as being non-self-passivating. No SEI is perfectly stable during cycling, and all SEI structures are heterogeneous both vertically and horizontally relative to the electrolyte interface. The difference between a "stable" and an "unstable" SEI may be viewed as the relative degree to which during cycling it thickens and becomes further heterogeneous. The unstable SEI on K metal leads to a number of interrelated problems, such as low cycling Coulombic efficiency (CE), a severe impedance rise, large overpotentials, and possibly electrical shorting, all of which have been reported to occur as early as in the first 10 plating/stripping cycles. Many of the traditional "interface fixes" employed for Li and Na metal anodes, such as various artificial SEIs, surface membranes, barrier layers, secondary separators, etc., have not been attempted or optimized for the case of K. This is an important area for further exploration, with an understanding that success may come harder with K than with Li due to K-based SEI reactivity with both ether and ester solvents.The second critical problem with K metal anodes is that they do not thermally or electrochemically wet a standard (untreated) Cu foil current collector. Published experimental and modeling research directly highlights the weak bonding between the K atoms and a Cu surface. Existing surface treatment approaches that achieve improved K wetting are discussed, along with the general design rules for future studies. Also discussed are geometry-based methods to tune nucleation as well dual approaches where nucleation and SEI structure are tuned through complementary schemes to achieve extended half-cell and full battery stability. We hypothesize that K metal never achieves a planar wetting morphology even at cycle one, making the dendrites "baked-in". We propose that classical thin film growth models, Frank van der Merwe (F-M), Volmer-Weber (V-W), and Stranski-Krastanov (S-K), can be employed to describe early stage plating behavior. It is demonstrated that islandlike V-W growth is the applicable description for the natural plating behavior of K on pristine Cu. Moving forward, there are three inter-related thrusts to be pursued: First, K salt-based electrolyte formulations have to mature and become further tailored to handle the increased reactivity of a metal rather than an ion anode. Second, the K-based SEI structure needs to be further understood and ultimately tuned to be less reactive. Third, the energetics of the K metal-current collector interface must be controlled to promote planar wetting/dewetting throughout cycling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...