Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
1.
bioRxiv ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38496654

RESUMO

Mutations that reduce the function of MYT1L, a neuron-specific transcription factor, are associated with a syndromic neurodevelopmental disorder. Furthermore, MYT1L is routinely used as a proneural factor in fibroblast-to-neuron transdifferentiation. MYT1L has been hypothesized to play a role in the trajectory of neuronal specification and subtype specific maturation, but this hypothesis has not been directly tested, nor is it clear which neuron types are most impacted by MYT1L loss. In this study, we profiled 313,335 nuclei from the forebrains of wild-type and MYT1L-deficient mice at two developmental stages: E14 at the peak of neurogenesis and P21, when neurogenesis is complete, to examine the role of MYT1L levels in the trajectory of neuronal development. We found that MYT1L deficiency significantly disrupted the relative proportion of cortical excitatory neurons at E14 and P21. Significant changes in gene expression were largely concentrated in excitatory neurons, suggesting that transcriptional effects of MYT1L deficiency are largely due to disruption of neuronal maturation programs. Most effects on gene expression were cell autonomous and persistent through development. In addition, while MYT1L can both activate and repress gene expression, the repressive effects were most sensitive to haploinsufficiency, and thus more likely mediate MYT1L syndrome. These findings illuminate the intricate role of MYT1L in orchestrating gene expression dynamics during neuronal development, providing insights into the molecular underpinnings of MYT1L syndrome.

2.
Bioinformatics ; 40(2)2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38323623

RESUMO

MOTIVATION: Unraveling the transcriptional programs that control how cells divide, differentiate, and respond to their environments requires a precise understanding of transcription factors' (TFs) DNA-binding activities. Calling cards (CC) technology uses transposons to capture transient TF binding events at one instant in time and then read them out at a later time. This methodology can also be used to simultaneously measure TF binding and mRNA expression from single-cell CC and to record and integrate TF binding events across time in any cell type of interest without the need for purification. Despite these advantages, there has been a lack of dedicated bioinformatics tools for the detailed analysis of CC data. RESULTS: We introduce Pycallingcards, a comprehensive Python module specifically designed for the analysis of single-cell and bulk CC data across multiple species. Pycallingcards introduces two innovative peak callers, CCcaller and MACCs, enhancing the accuracy and speed of pinpointing TF binding sites from CC data. Pycallingcards offers a fully integrated environment for data visualization, motif finding, and comparative analysis with RNA-seq and ChIP-seq datasets. To illustrate its practical application, we have reanalyzed previously published mouse cortex and glioblastoma datasets. This analysis revealed novel cell-type-specific binding sites and potential sex-linked TF regulators, furthering our understanding of TF binding and gene expression relationships. Thus, Pycallingcards, with its user-friendly design and seamless interface with the Python data science ecosystem, stands as a critical tool for advancing the analysis of TF functions via CC data. AVAILABILITY AND IMPLEMENTATION: Pycallingcards can be accessed on the GitHub repository: https://github.com/The-Mitra-Lab/pycallingcards.


Assuntos
Ecossistema , Fatores de Transcrição , Animais , Camundongos , Imunoprecipitação da Cromatina , Fatores de Transcrição/metabolismo , Sítios de Ligação , Ligação Proteica , Análise de Sequência de DNA
4.
Curr Protoc ; 3(9): e883, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37755132

RESUMO

Calling Cards is a platform technology to record a cumulative history of transient protein-DNA interactions in the genome of genetically targeted cell types. The record of these interactions is recovered by next-generation sequencing. Compared with other genomic assays, readouts of which provide a snapshot at the time of harvest, Calling Cards enables correlation of historical molecular states to eventual outcomes or phenotypes. To achieve this, Calling Cards uses the piggyBac transposase to insert self-reporting transposon "Calling Cards" into the genome, leaving permanent marks at interaction sites. Calling Cards can be deployed in a variety of in vitro and in vivo biological systems to study gene regulatory networks involved in development, aging, and disease. Out of the box, it assesses enhancer usage but can be adapted to profile-specific transcription factor (TF) binding with custom TF-piggyBac fusion proteins. The Calling Cards workflow has five main stages: delivery of Calling Cards reagents, sample preparation, library preparation, sequencing, and data analysis. Here, we first present a comprehensive guide for experimental design, reagent selection, and optional customization of the platform to study additional TFs. Then, we provide an updated protocol for the five steps, using reagents that improve throughput and decrease costs, including an overview of a newly deployed computational pipeline. This protocol is designed for users with basic molecular biology experience to process samples into sequencing libraries in 2 days. Familiarity with bioinformatic analysis and command line tools is required to set up the pipeline in a high-performance computing environment and to conduct downstream analyses. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Preparation and delivery of Calling Cards reagents Support Protocol 1: Next-generation sequencing quantification of barcode distribution within self-reporting transposon plasmid pool and adeno-associated virus genome Basic Protocol 2: Sample collection and RNA purification Support Protocol 2: Library density quantitative PCR Basic Protocol 3: Sequencing library preparation Basic Protocol 4: Library pooling and sequencing Basic Protocol 5: Data analysis.


Assuntos
Proteínas de Ligação a DNA , DNA , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Plasmídeos , DNA/genética , Genoma , Genômica/métodos
5.
bioRxiv ; 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37333130

RESUMO

Calling Cards is a platform technology to record a cumulative history of transient protein-DNA interactions in the genome of genetically targeted cell types. The record of these interactions is recovered by next generation sequencing. Compared to other genomic assays, whose readout provides a snapshot at the time of harvest, Calling Cards enables correlation of historical molecular states to eventual outcomes or phenotypes. To achieve this, Calling Cards uses the piggyBac transposase to insert self-reporting transposon (SRT) "Calling Cards" into the genome, leaving permanent marks at interaction sites. Calling Cards can be deployed in a variety of in vitro and in vivo biological systems to study gene regulatory networks involved in development, aging, and disease. Out of the box, it assesses enhancer usage but can be adapted to profile specific transcription factor binding with custom transcription factor (TF)-piggyBac fusion proteins. The Calling Cards workflow has five main stages: delivery of Calling Card reagents, sample preparation, library preparation, sequencing, and data analysis. Here, we first present a comprehensive guide for experimental design, reagent selection, and optional customization of the platform to study additional TFs. Then, we provide an updated protocol for the five steps, using reagents that improve throughput and decrease costs, including an overview of a newly deployed computational pipeline. This protocol is designed for users with basic molecular biology experience to process samples into sequencing libraries in 1-2 days. Familiarity with bioinformatic analysis and command line tools is required to set up the pipeline in a high-performance computing environment and to conduct downstream analyses. Basic Protocol 1: Preparation and delivery of Calling Cards reagentsBasic Protocol 2: Sample preparationBasic Protocol 3: Sequencing library preparationBasic Protocol 4: Library pooling and sequencingBasic Protocol 5: Data analysis.

6.
Oncogene ; 42(29): 2237-2248, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37344626

RESUMO

Epithelial-to-mesenchymal transition (EMT) is a process by which cells lose their epithelial characteristics and gain mesenchymal phenotypes. In cancer, EMT is thought to drive tumor invasion and metastasis. Recent efforts to understand EMT biology have uncovered that cells undergoing EMT attain a spectrum of intermediate "hybrid E/M" states, which exist along an epithelial-mesenchymal continuum. Here, we summarize recent studies characterizing the epigenetic drivers of hybrid E/M states. We focus on the histone-modification writers, erasers, and readers that assist or oppose the canonical hybrid E/M transcription factors that modulate hybrid E/M state transitions. We also examine the role of chromatin remodelers and DNA methylation in hybrid E/M states. Finally, we highlight the challenges of targeting hybrid E/M pharmacologically, and we propose future directions that might reveal the specific and targetable mechanisms by which hybrid E/M drives metastasis in patients.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Neoplasias/genética , Neoplasias/patologia , Células Epiteliais/metabolismo , Fatores de Transcrição/genética , Fenótipo , Transição Epitelial-Mesenquimal/genética
7.
Nucleic Acids Res ; 51(10): 5006-5021, 2023 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-37125648

RESUMO

Gene expression changes are orchestrated by transcription factors (TFs), which bind to DNA to regulate gene expression. It remains surprisingly difficult to predict basic features of the transcriptional process, including in vivo TF occupancy. Existing thermodynamic models of TF function are often not concordant with experimental measurements, suggesting undiscovered biology. Here, we analyzed one of the most well-studied TFs, the yeast zinc cluster Gal4, constructed a Shea-Ackers thermodynamic model to describe its binding, and compared the results of this model to experimentally measured Gal4p binding in vivo. We found that at many promoters, the model predicted no Gal4p binding, yet substantial binding was observed. These outlier promoters lacked canonical binding motifs, and subsequent investigation revealed Gal4p binds unexpectedly to DNA sequences with high densities of its half site (CGG). We confirmed this novel mode of binding through multiple experimental and computational paradigms; we also found most other zinc cluster TFs we tested frequently utilize this binding mode, at 27% of their targets on average. Together, these results demonstrate a novel mode of binding where zinc clusters, the largest class of TFs in yeast, bind DNA sequences with high densities of half sites.


Assuntos
Saccharomyces cerevisiae , Fatores de Transcrição , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Zinco/metabolismo , Ligação Proteica
8.
ACS Synth Biol ; 12(2): 624-633, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36650116

RESUMO

Numerous tools for gene expression knockdown have been developed and characterized in the model organism Saccharomyces cerevisiae and extended to facilitate studies in multicellular models. To comparatively evaluate the efficacy of these approaches, we systematically applied seven such published constitutive and inducible knockdown strategies to a panel of essential genes encoding nuclear-localized proteins. In this effort, we created the CEAS (C-SWAT for Essential Allele Strains) collection, a suite of tagging vectors for improved utility and ease of strain construction. Of particular note, we adapted an improved auxin inducible degron (AID) protein degradation strategy previously available only in mammalian tissue culture for one-step strain construction in budding yeast by leveraging both the C-SWAT system and CRISPR/Cas9 editing. Taken together, this work presents a toolbox for endogenous gene expression knockdown and allows us to make recommendations on the efficacy and applicability of these tools for the perturbation of essential genes.


Assuntos
Sistemas CRISPR-Cas , Saccharomyces cerevisiae , Sistemas CRISPR-Cas/genética , Edição de Genes , Expressão Gênica , Ácidos Indolacéticos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
9.
Commun Biol ; 5(1): 1128, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36284160

RESUMO

Most human genetic variation is classified as variants of uncertain significance. While advances in genome editing have allowed innovation in pooled screening platforms, many screens deal with relatively simple readouts (viability, fluorescence) and cannot identify the complex cellular phenotypes that underlie most human diseases. In this paper, we present a generalizable functional genomics platform that combines high-content imaging, machine learning, and microraft isolation in a method termed "Raft-Seq". We highlight the efficacy of our platform by showing its ability to distinguish pathogenic point mutations of the mitochondrial regulator Mitofusin 2, even when the cellular phenotype is subtle. We also show that our platform achieves its efficacy using multiple cellular features, which can be configured on-the-fly. Raft-Seq enables a way to perform pooled screening on sets of mutations in biologically relevant cells, with the ability to physically capture any cell with a perturbed phenotype and expand it clonally, directly from the primary screen.


Assuntos
Edição de Genes , Genômica , Humanos , Mutação , Genômica/métodos , Fenótipo , Mitocôndrias/genética
10.
NAR Genom Bioinform ; 4(3): lqac061, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36062164

RESUMO

Calling cards technology using self-reporting transposons enables the identification of DNA-protein interactions through RNA sequencing. Although immensely powerful, current implementations of calling cards in bulk experiments on populations of cells are technically cumbersome and require many replicates to identify independent insertions into the same genomic locus. Here, we have drastically reduced the cost and labor requirements of calling card experiments in bulk populations of cells by introducing a DNA barcode into the calling card itself. An additional barcode incorporated during reverse transcription enables simultaneous transcriptome measurement in a facile and affordable protocol. We demonstrate that barcoded self-reporting transposons recover in vitro binding sites for four basic helix-loop-helix transcription factors with important roles in cell fate specification: ASCL1, MYOD1, NEUROD2 and NGN1. Further, simultaneous calling cards and transcriptional profiling during transcription factor overexpression identified both binding sites and gene expression changes for two of these factors. Lastly, we demonstrated barcoded calling cards can record binding in vivo in the mouse brain. In sum, RNA-based identification of transcription factor binding sites and gene expression through barcoded self-reporting transposon calling cards and transcriptomes is an efficient and powerful method to infer gene regulatory networks in a population of cells.

11.
Nat Neurosci ; 25(2): 238-251, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35115729

RESUMO

The peripheral nerve contains diverse cell types that support its proper function and maintenance. In this study, we analyzed multiple peripheral nerves using single-nuclei RNA sequencing, which allowed us to circumvent difficulties encountered in analyzing cells with complex morphologies via conventional single-cell methods. The resultant mouse peripheral nerve cell atlas highlights a diversity of cell types, including multiple subtypes of Schwann cells (SCs), immune cells and stromal cells. We identified a distinct myelinating SC subtype that expresses Cldn14, Adamtsl1 and Pmp2 and preferentially ensheathes motor axons. The number of these motor-associated Pmp2+ SCs is reduced in both an amyotrophic lateral sclerosis (ALS) SOD1G93A mouse model and human ALS nerve samples. Our findings reveal the diversity of SCs and other cell types in peripheral nerve and serve as a reference for future studies of nerve biology and disease.


Assuntos
Esclerose Lateral Amiotrófica , Esclerose Lateral Amiotrófica/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Camundongos Transgênicos , Neuroglia/metabolismo , Nervos Periféricos/metabolismo , Células de Schwann/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
12.
HGG Adv ; 3(1): 100081, 2022 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-35047865

RESUMO

While 9p deletion and duplication syndromes have been studied for several years, small sample sizes and minimal high-resolution data have limited a comprehensive delineation of genotypic and phenotypic characteristics. In this study, we examined genetic data from 719 individuals in the worldwide 9p Network Cohort: a cohort seven to nine times larger than any previous study of 9p. Most breakpoints occur in bands 9p22 and 9p24, accounting for 35% and 38% of all breakpoints, respectively. Bands 9p11 and 9p12 have the fewest breakpoints, with each accounting for 0.6% of all breakpoints. The most common phenotype in 9p deletion and duplication syndromes is developmental delay, and we identified eight known neurodevelopmental disorder genes in 9p22 and 9p24. Since it has been previously reported that some individuals have a secondary structural variant related to the 9p variant, we examined our cohort for these variants and found 97 events. The top secondary variant involved 9q in 14 individuals (1.9%), including ring chromosomes and inversions. We identified a gender bias with significant enrichment for females (p = 0.0006) that may arise from a sex reversal in some individuals with 9p deletions. Genes on 9p were characterized regarding function, constraint metrics, and protein-protein interactions, resulting in a prioritized set of genes for further study. Finally, we achieved precision genomics in one child with a complex 9p structural variation using modern genomic technologies, demonstrating that long-read sequencing will be integral for some cases. Our study is the largest ever on 9p-related syndromes and provides key insights into genetic factors involved in these syndromes.

13.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33850013

RESUMO

Sex can be an important determinant of cancer phenotype, and exploring sex-biased tumor biology holds promise for identifying novel therapeutic targets and new approaches to cancer treatment. In an established isogenic murine model of glioblastoma (GBM), we discovered correlated transcriptome-wide sex differences in gene expression, H3K27ac marks, large Brd4-bound enhancer usage, and Brd4 localization to Myc and p53 genomic binding sites. These sex-biased gene expression patterns were also evident in human glioblastoma stem cells (GSCs). These observations led us to hypothesize that Brd4-bound enhancers might underlie sex differences in stem cell function and tumorigenicity in GBM. We found that male and female GBM cells exhibited sex-specific responses to pharmacological or genetic inhibition of Brd4. Brd4 knockdown or pharmacologic inhibition decreased male GBM cell clonogenicity and in vivo tumorigenesis while increasing both in female GBM cells. These results were validated in male and female patient-derived GBM cell lines. Furthermore, analysis of the Cancer Therapeutic Response Portal of human GBM samples segregated by sex revealed that male GBM cells are significantly more sensitive to BET (bromodomain and extraterminal) inhibitors than are female cells. Thus, Brd4 activity is revealed to drive sex differences in stem cell and tumorigenic phenotypes, which can be abrogated by sex-specific responses to BET inhibition. This has important implications for the clinical evaluation and use of BET inhibitors.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Glioblastoma/metabolismo , Proteínas Nucleares/metabolismo , Fatores Sexuais , Fatores de Transcrição/metabolismo , Animais , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/genética , Glioblastoma/genética , Histonas/metabolismo , Humanos , Masculino , Camundongos , Proteínas Nucleares/fisiologia , Ligação Proteica , Proteínas Proto-Oncogênicas c-myc/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Caracteres Sexuais , Fatores de Transcrição/fisiologia , Proteína Supressora de Tumor p53/metabolismo
14.
Hum Immunol ; 82(4): 288-295, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33612390

RESUMO

Nanopore sequencing has been investigated as a rapid and cost-efficient option for HLA typing in recent years. Despite the lower raw read accuracy, encouraging typing accuracy has been reported, and long reads from the platform offer additional benefits of the improved phasing of distant variants. The newly released R10.3 flow cells are expected to provide higher read-level accuracy than previous chemistries. We examined the performance of R10.3 flow cells on the MinION device in HLA typing after enrichment of target genes by multiplexed PCR. We also aimed to mimic a 1-day workflow with 8-24 samples per sequencing run. A diverse collection of 102 unique samples were typed for HLA-A, -B, -C, -DPA1, -DPB1, -DQA1, -DQB1, -DRB1, -DRB3/4/5 loci. The concordance rates at 2-field and 3-field resolutions were 99.5% (1836 alleles) and 99.3% (1710 alleles). We also report important quality metrics from these sequencing runs. Continued research and independent validations are warranted to increase the robustness of nanopore-based HLA typing for broad clinical application.


Assuntos
Antígenos HLA/genética , Teste de Histocompatibilidade/métodos , Sequenciamento por Nanoporos/métodos , Alelos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Nanoporos
15.
Bioinformatics ; 37(8): 1168-1170, 2021 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-32941613

RESUMO

SUMMARY: Transposon calling cards is a genomic assay for identifying transcription factor binding sites in both bulk and single cell experiments. Here, we describe the qBED format, an open, text-based standard for encoding and analyzing calling card data. In parallel, we introduce the qBED track on the WashU Epigenome Browser, a novel visualization that enables researchers to inspect calling card data in their genomic context. Finally, through examples, we demonstrate that qBED files can be used to visualize non-calling card datasets, such as Combined Annotation-Dependent Depletion scores and GWAS/eQTL hits, and thus may have broad utility to the genomics community. AVAILABILITY AND IMPLEMENTATION: The qBED track is available on the WashU Epigenome Browser (http://epigenomegateway.wustl.edu/browser), beginning with version 46. Source code for the WashU Epigenome Browser with qBED support is available on GitHub (http://github.com/arnavm/eg-react and http://github.com/lidaof/eg-react). A complete definition of the qBED format is available as part of the WashU Epigenome Browser documentation (https://eg.readthedocs.io/en/latest/tracks.html#qbed-track). We have also released a tutorial on how to upload qBED data to the browser (http://dx.doi.org/10.17504/protocols.io.bca8ishw).


Assuntos
Genoma , Software , Epigenoma , Genômica , Ligação Proteica
16.
Clin Chem ; 67(2): 415-424, 2021 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-33098427

RESUMO

BACKGROUND: Rapid, reliable, and widespread testing is required to curtail the ongoing COVID-19 pandemic. Current gold-standard nucleic acid tests are hampered by supply shortages in critical reagents including nasal swabs, RNA extraction kits, personal protective equipment, instrumentation, and labor. METHODS: To overcome these challenges, we developed a rapid colorimetric assay using reverse-transcription loop-mediated isothermal amplification (RT-LAMP) optimized on human saliva samples without an RNA purification step. We describe the optimization of saliva pretreatment protocols to enable analytically sensitive viral detection by RT-LAMP. We optimized the RT-LAMP reaction conditions and implemented high-throughput unbiased methods for assay interpretation. We tested whether saliva pretreatment could also enable viral detection by conventional reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Finally, we validated these assays on clinical samples. RESULTS: The optimized saliva pretreatment protocol enabled analytically sensitive extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP or RT-qPCR. In simulated samples, the optimized RT-LAMP assay had a limit of detection of 59 (95% confidence interval: 44-104) particle copies per reaction. We highlighted the flexibility of LAMP assay implementation using 3 readouts: naked-eye colorimetry, spectrophotometry, and real-time fluorescence. In a set of 30 clinical saliva samples, colorimetric RT-LAMP and RT-qPCR assays performed directly on pretreated saliva samples without RNA extraction had accuracies greater than 90%. CONCLUSIONS: Rapid and extraction-free detection of SARS-CoV-2 from saliva by colorimetric RT-LAMP is a simple, sensitive, and cost-effective approach with broad potential to expand diagnostic testing for the virus causing COVID-19.


Assuntos
Teste de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , RNA Viral/análise , SARS-CoV-2/isolamento & purificação , Saliva/virologia , COVID-19/epidemiologia , Colorimetria/métodos , Endopeptidase K/química , Humanos , Limite de Detecção , Pandemias , Testes Imediatos , SARS-CoV-2/química
17.
Genome Res ; 30(9): 1317-1331, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32887689

RESUMO

The overwhelming success of exome- and genome-wide association studies in discovering thousands of disease-associated genes necessitates developing novel high-throughput functional genomics approaches to elucidate the molecular mechanisms of these genes. Here, we have coupled multiplexed repression of neurodevelopmental disease-associated genes to single-cell transcriptional profiling in differentiating human neurons to rapidly assay the functions of multiple genes in a disease-relevant context, assess potentially convergent mechanisms, and prioritize genes for specific functional assays. For a set of 13 autism spectrum disorder (ASD)-associated genes, we show that this approach generated important mechanistic insights, revealing two functionally convergent modules of ASD genes: one that delays neuron differentiation and one that accelerates it. Five genes that delay neuron differentiation (ADNP, ARID1B, ASH1L, CHD2, and DYRK1A) mechanistically converge, as they all dysregulate genes involved in cell-cycle control and progenitor cell proliferation. Live-cell imaging after individual ASD-gene repression validated this functional module, confirming that these genes reduce neural progenitor cell proliferation and neurite growth. Finally, these functionally convergent ASD gene modules predicted shared clinical phenotypes among individuals with mutations in these genes. Altogether, these results show the utility of a novel and simple approach for the rapid functional elucidation of neurodevelopmental disease-associated genes.


Assuntos
Transtorno do Espectro Autista/genética , Neurogênese/genética , Neurônios/metabolismo , Análise de Célula Única/métodos , Sistemas CRISPR-Cas , Linhagem Celular , Proliferação de Células , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Silenciamento de Genes/métodos , Células HEK293 , Humanos , Processamento de Imagem Assistida por Computador , Modelos Genéticos , Neurogênese/fisiologia , Crescimento Neuronal/genética , Fenótipo , RNA-Seq , Transcriptoma
18.
Mol Biol Evol ; 37(12): 3576-3600, 2020 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-32722770

RESUMO

Long INterspersed Elements-1 (L1s) constitute >17% of the human genome and still actively transpose in it. Characterizing L1 transposition across the genome is critical for understanding genome evolution and somatic mutations. However, to date, L1 insertion and fixation patterns have not been studied comprehensively. To fill this gap, we investigated three genome-wide data sets of L1s that integrated at different evolutionary times: 17,037 de novo L1s (from an L1 insertion cell-line experiment conducted in-house), and 1,212 polymorphic and 1,205 human-specific L1s (from public databases). We characterized 49 genomic features-proxying chromatin accessibility, transcriptional activity, replication, recombination, etc.-in the ±50 kb flanks of these elements. These features were contrasted between the three L1 data sets and L1-free regions using state-of-the-art Functional Data Analysis statistical methods, which treat high-resolution data as mathematical functions. Our results indicate that de novo, polymorphic, and human-specific L1s are surrounded by different genomic features acting at specific locations and scales. This led to an integrative model of L1 transposition, according to which L1s preferentially integrate into open-chromatin regions enriched in non-B DNA motifs, whereas they are fixed in regions largely free of purifying selection-depleted of genes and noncoding most conserved elements. Intriguingly, our results suggest that L1 insertions modify local genomic landscape by extending CpG methylation and increasing mononucleotide microsatellite density. Altogether, our findings substantially facilitate understanding of L1 integration and fixation preferences, pave the way for uncovering their role in aging and cancer, and inform their use as mutagenesis tools in genetic studies.


Assuntos
Evolução Biológica , Elementos de DNA Transponíveis , Genoma Humano , Elementos Nucleotídeos Longos e Dispersos , Modelos Genéticos , Humanos , Mutagênese Insercional
19.
Cell ; 182(4): 992-1008.e21, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32710817

RESUMO

Cellular heterogeneity confounds in situ assays of transcription factor (TF) binding. Single-cell RNA sequencing (scRNA-seq) deconvolves cell types from gene expression, but no technology links cell identity to TF binding sites (TFBS) in those cell types. We present self-reporting transposons (SRTs) and use them in single-cell calling cards (scCC), a novel assay for simultaneously measuring gene expression and mapping TFBS in single cells. The genomic locations of SRTs are recovered from mRNA, and SRTs deposited by exogenous, TF-transposase fusions can be used to map TFBS. We then present scCC, which map SRTs from scRNA-seq libraries, simultaneously identifying cell types and TFBS in those same cells. We benchmark multiple TFs with this technique. Next, we use scCC to discover BRD4-mediated cell-state transitions in K562 cells. Finally, we map BRD4 binding sites in the mouse cortex at single-cell resolution, establishing a new method for studying TF biology in situ.


Assuntos
Elementos de DNA Transponíveis/genética , Análise de Célula Única/métodos , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Córtex Cerebral/metabolismo , Imunoprecipitação da Cromatina , Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/genética , Fator 3-beta Nuclear de Hepatócito/metabolismo , Humanos , Camundongos , Ligação Proteica , Análise de Sequência de RNA , Fator de Transcrição Sp1/genética , Fator de Transcrição Sp1/metabolismo , Fatores de Transcrição/genética
20.
medRxiv ; 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32511508

RESUMO

Rapid, reliable, and widespread testing is required to curtail the ongoing COVID-19 pandemic. Current gold standard nucleic acid tests are hampered by supply shortages in critical reagents including nasal swabs, RNA extraction kits, personal protective equipment (PPE), instrumentation, and labor. Here we present an approach to overcome these challenges with the development of a rapid colorimetric assay using reverse-transcription loop-mediated isothermal amplification (RT-LAMP) optimized on human saliva samples without an RNA purification step. We describe our optimizations of the LAMP reaction and saliva pretreatment protocols that enabled rapid and sensitive detection of < 102 viral genomes per reaction in contrived saliva controls. Moreover, our saliva pretreatment protocol enabled sensitive viral detection by conventional quantitative reverse transcription polymerase chain reaction (qRT-PCR) without RNA extraction. We validated the high performance of these assays on clinical samples and demonstrate a promising approach to overcome the current bottlenecks limiting widespread testing.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...