Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25551, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38327454

RESUMO

Succinic acid (SA) production is continuously rising, as its applications in diverse end-product generation are getting broader and more expansive. SA is an eco-friendly bulk product that acts as a valuable intermediate in different processes and might substitute other petrochemical-based products due to the inner capacity of microbes to biosynthesize it. Moreover, large amounts of SA can be obtained through biotechnological ways starting from renewable resources, imprinting at the same time the concept of a circular economy. In this context, the target of the present review paper is to bring an overview of SA market demands, production, biotechnological approaches, new strategies of production, and last but not least, the possible limitations and the latest perspectives in terms of natural biosynthesis of SA.

2.
Foods ; 13(2)2024 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-38254559

RESUMO

This investigation aimed to assess the chemical composition and biological activities of bog bilberry (Vaccinium uliginosum L.) leaves. Hydroethanolic extracts were obtained using four extraction techniques: one conventional (CE) and three alternative methods; ultrasound (UAE), microwave (MAE) and high-pressure (HPE) extractions. Spectrophotometric analysis was conducted to determine their chemical content, including the total phenolic content (TPC) and total flavonoid content (TFC). Furthermore, their antioxidative and antimicrobial properties were evaluated. HPLC (high performance liquid chromatography) analysis identified and quantified 17 phenolic compounds, with chlorogenic acid being the predominant compound, with the lowest level (37.36 ± 0.06 mg/g) for the bog bilberry leaf extract obtained by CE and the highest levels (e.g., HPE = 44.47 ± 0.08 mg/g) for the bog bilberry leaf extracts obtained by the alternative methods. Extracts obtained by HPE, UAE and MAE presented TPC values (135.75 ± 2.86 mg GAE/g; 130.52 ± 1.99 mg GAE/g; 119.23 ± 1.79 mg GAE/g) higher than those obtained by the CE method (113.07 ± 0.98 mg GAE/g). Regarding the TFC values, similar to TPC, the highest levels were registered in the extracts obtained by alternative methods (HPE = 43.16 ± 0.12 mg QE/g; MAE = 39.79 ± 0.41 mg QE/g and UAE = 33.89 ± 0.35 mg QE/g), while the CE extract registered the lowest level, 31.47 ± 0.28 mg QE/g. In the case of DPPH (1,1-diphenyl-2-picrylhydrazyl) antioxidant activity, the extracts from HPE, UAE and MAE exhibited the strongest radical scavenging capacities of 71.14%, 63.13% and 60.84%, respectively, whereas the CE extract registered only 55.37%. According to Microbiology Reader LogPhase 600 (BioTek), a common MIC value of 8.88 mg/mL was registered for all types of extracts against Staphylococcus aureus (Gram-positive bacteria) and Salmonella enterica (Gram-negative bacteria). Moreover, the alternative extraction methods (UAE, HPE) effectively inhibited the growth of Candida parapsilosis, in comparison to the lack of inhibition from the CE method. This study provides valuable insights into bog bilberry leaf extracts, reporting a comprehensive evaluation of their chemical composition and associated biological activities, with alternative extraction methods presenting greater potential for the recovery of phenolic compounds with increased biological activities than the conventional method.

3.
Toxins (Basel) ; 15(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37755974

RESUMO

In recent years, more scientific data have pointed out the close connection between intestinal microbial community, nutritional habits, lifestyle, and the appearance of various affections located at certain anatomical systems. Gut dysbiosis enhances the formation and accumulation of specific metabolites with toxic potential that induce the appearance of kidney-associated illnesses. Intestinal microbes are involved in the degradation of food, drugs, or other ingested products that lead to the formation of various metabolites that end up in renal tissue. Over the last few years, the possibilities of modulating the gut microbiota for the biosynthesis of targeted compounds with bioactive properties for reducing the risk of chronic illness development were investigated. In this regard, the present narrative review provides an overview of the scientific literature across the last decade considering the relationship between bioactive compounds, pre-, pro-, and post-biotics, uremic toxicity, and kidney-associated affections, and the possibility of alleviating the accumulation and the negative effects of uremic toxins into the renal system.


Assuntos
Microbioma Gastrointestinal , Microbiota , Probióticos , Insuficiência Renal Crônica , Humanos , Insuficiência Renal Crônica/metabolismo , Probióticos/uso terapêutico , Rim/metabolismo , Toxinas Urêmicas , Disbiose , Prebióticos
4.
Foods ; 12(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37174421

RESUMO

One significant food group that is part of our daily diet is the dairy group, and both research and industry are actively involved to meet the increasing requirement for plant-based dairy alternatives (PBDAs). The production tendency of PBDAs is growing with a predictable rate of over 18.5% in 2023 from 7.4% at the moment. A multitude of sources can be used for development such as cereals, pseudocereals, legumes, nuts, and seeds to obtain food products such as vegetal milk, cheese, cream, yogurt, butter, and different sweets, such as ice cream, which have nearly similar nutritional profiles to those of animal-origin products. Increased interest in PBDAs is manifested in groups with special dietary needs (e.g., lactose intolerant individuals, pregnant women, newborns, and the elderly) or with pathologies such as metabolic syndromes, dermatological diseases, and arthritis. In spite of the vast range of production perspectives, certain industrial challenges arise during development, such as processing and preservation technologies. This paper aims at providing an overview of the currently available PBDAs based on recent studies selected from the electronic databases PubMed, Web of Science Core Collection, and Scopus. We found 148 publications regarding PBDAs in correlation with their nutritional and technological aspects, together with the implications in terms of health. Therefore, this review focuses on the relationship between plant-based alternatives for dairy products and the human diet, from the raw material to the final products, including the industrial processes and health-related concerns.

5.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432076

RESUMO

Polyphenols of plant origin are a broad family of secondary metabolites that range from basic phenolic acids to more complex compounds such as stilbenes, flavonoids, and tannins, all of which have several phenol units in their structure. Considerable health benefits, such as having prebiotic potential and cardio-protective and weight control effects, have been linked to diets based on polyphenol-enriched foods and plant-based products, indicating the potential role of these substances in the prevention or treatment of numerous pathologies. The most representative phenolic compounds in apple pomace are phloridzin, chlorogenic acid, and epicatechin, with major health implications in diabetes, cancer, and cardiovascular and neurocognitive diseases. The cereal byproducts are rich in flavonoids (cyanidin 3-glucoside) and phenolic acids (ferulic acid), all with significant results in reducing the incidence of noncommunicable diseases. Quercetin, naringenin, and rutin are the predominant phenolic molecules in tomato by-products, having important antioxidant and antimicrobial activities. The present understanding of the functionality of polyphenols in health outcomes, specifically, noncommunicable illnesses, is summarized in this review, focusing on the applicability of this evidence in three extensive agrifood industries (apple, cereal, and tomato processing). Moreover, the reintegration of by-products into the food chain via functional food products and personalized nutrition (e.g., 3D food printing) is detailed, supporting a novel direction to be explored within the circular economy concept.


Assuntos
Malus , Solanum lycopersicum , Polifenóis/análise , Solanum lycopersicum/química , Grão Comestível , Frutas/química , Fenóis/análise , Flavonoides/análise
6.
Antioxidants (Basel) ; 11(9)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36139803

RESUMO

The production of active and biodegradable packaging materials is an emerging and efficient alternative to plastic packaging materials. By combining poly(vinyl alcohol) (PVA), pectin, and itaconic acid (IA), biodegradable and water-soluble packaging materials can be obtained that can also increase the shelf-life and quality of foodstuff. In the present study, the generated film-forming solutions were enriched with organic or phenolic extracts from apple by-products (apple pomace). These extracts possess an efficient antioxidant activity of 9.70 ± 0.08, and 78.61 ± 0.24 µM Trolox/100 g fresh weight, respectively. Furthermore, the lyophilization of these by-products increased the extract's organic and phenolic content and the antioxidant activity to 67.45 ± 0.28 and 166.69 ± 0.47 µM Trolox/100 g fresh weight, respectively. These extracts influence the physical-chemical properties of the biofilm solutions by facilitating the polymerization process and thus positively influencing their viscosity. The resulting biofilms presented low water vapor permeability and reduced solubility in water. Adding IA and organic/phenolic compounds facilitates the resistance against intrinsic and extrinsic factors; therefore, they might be applicable in the food industry.

8.
Gels ; 8(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36005125

RESUMO

Nowadays, edible materials such as polysaccharides have gained attention due to their valuable attributes, especially gelling property. Polysaccharide-based edible gels (PEGs) can be classified as (i) hydrogels, (ii) oleogels and bigels, (iii) and aerogels, cryogels and xerogels, respectively. PEGs have different characteristics and benefits depending on the functional groups of polysaccharide chains (e.g., carboxylic, sulphonic, amino, methoxyl) and on the preparation method. However, PEGs are found in the incipient phase of research and most studies are related to their preparation, characterization, sustainable raw materials, and applicability. Furthermore, all these aspects are treated separately for each class of PEG, without offering an overview of those already obtained PEGs. The novelty of this manuscript is to offer an overview of the classification, definition, formulation, and characterization of PEGs. Furthermore, the applicability of PEGs in the food sector (e.g., food packaging, improving food profile agent, delivery systems) and in the medical/pharmaceutical sector is also critically discussed. Ultimately, the correlation between PEG consumption and polysaccharides properties for human health (e.g., intestinal microecology, "bridge effect" in obesity, gut microbiota) are critically discussed for the first time. Bigels may be valuable for use as ink for 3D food printing in personalized diets for human health treatment. PEGs have a significant role in developing smart materials as both ingredients and coatings and methods, and techniques for exploring PEGs are essential. PEGs as carriers of bioactive compounds have a demonstrated effect on obesity. All the physical, chemical, and biological interactions among PEGs and other organic and inorganic structures should be investigated.

9.
Front Med (Lausanne) ; 9: 813204, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35433746

RESUMO

Over the last 10 years, there has been a growing interest in the relationship between gut microbiota, the brain, and neurologic-associated affections. As multiple preclinical and clinical research studies highlight gut microbiota's potential to modulate the general state of health state, it goes without saying that gut microbiota plays a significant role in neurogenesis, mental and cognitive development, emotions, and behaviors, and in the progression of neuropsychiatric illnesses. Gut microbiota produces important biologic products that, through the gut-brain axis, are directly connected with the appearance and evolution of neurological and psychiatric disorders such as depression, anxiety, bipolar disorder, autism, schizophrenia, Parkinson's disease, Alzheimer's disease, dementia, multiple sclerosis, and epilepsy. This study reviews recent research on the link between gut microbiota and the brain, and microbiome's role in shaping the development of the most common neurological and psychiatric illnesses. Moreover, special attention is paid to the use of probiotic formulations as a potential non-invasive therapeutic opportunity for prevention and management of neuropsychiatric-associated affections.

10.
Antioxidants (Basel) ; 11(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35453359

RESUMO

In recent years, Vaccinium spp. (bilberry-VMT, lingonberry-VVIT, and blueberry-VCS) have sparked particular interest for their prospective health benefits. The latest investigations have place them as important alternative sources of nutraceuticals as their leaves are the main by-products of berry harvesting. The present study is aimed at investigating the bioaccessibility of phenolic compounds from leaves of the Vaccinium species, both as microencapsulated powder and aqueous extracts, following exposure to in vitro simulated digestion. Moreover, the impact of maltodextrin and glucose microencapsulation carriers on the extracts' phenolic content was assessed. Prior to encapsulation, the viscosity of the emulsions was shown at a shear stress of 50 s-1 dilatant and a Newtonian behaviour above this value with a final viscosity between 1.024 and 1.049 mPa·s. The final microencapsulation yield for the samples ranged between 79 and 81%. Although the microencapsulated forms presented a targeted release at the intestinal level, the phenolic content decreased after gastrointestinal digestion. The bioaccessibility of the microencapsulated extracts showed higher values than their non-encapsulated counterparts, with the highest value of 45.43% in the VVIT sample, followed by VCS with 41.07%. However, the non-encapsulated VCS sample presented high bioaccessibility after in vitro digestion (38.65%). As concluded, further in vivo research should be conducted on the leaves of the Vaccinium species.

11.
Nutrients ; 13(6)2021 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-34203002

RESUMO

Irritable bowel syndrome (IBS) is still a common functional gastrointestinal disease that presents chronic abdominal symptoms but with a pathophysiology that is not yet fully elucidated. Moreover, the use of the synergistic combination of prebiotics and probiotics, known as synbiotics, for IBS therapy is still in the early stages. Advancements in technology led to determining the important role played by probiotics in IBS, whereas the present paper focuses on the detailed review of the various pathophysiologic mechanisms of action of probiotics, prebiotics, and synbiotics via multidisciplinary domains involving the gastroenterology (microbiota modulation, alteration of gut barrier function, visceral hypersensitivity, and gastrointestinal dysmotility) immunology (intestinal immunological modulation), and neurology (microbiota-gut-brain axis communication and co-morbidities) in mitigating the symptoms of IBS. In addition, this review synthesizes literature about the mechanisms involved in the beneficial effects of prebiotics and synbiotics for patients with IBS, discussing clinical studies testing the efficiency and outcomes of synbiotics used as therapy for IBS.


Assuntos
Síndrome do Intestino Irritável/dietoterapia , Prebióticos/administração & dosagem , Probióticos/uso terapêutico , Simbióticos/administração & dosagem , Ansiedade , Encéfalo/metabolismo , Comorbidade , Depressão , Microbioma Gastrointestinal/fisiologia , Motilidade Gastrointestinal , Humanos , Mucosa Intestinal/metabolismo , Intestinos/imunologia , Síndrome do Intestino Irritável/microbiologia , Síndrome do Intestino Irritável/fisiopatologia , Síndrome do Intestino Irritável/psicologia
12.
Front Cell Infect Microbiol ; 10: 575559, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33363049

RESUMO

The current COVID-19 pandemic is a great challenge for worldwide researchers in the human microbiota area because the mechanisms and long-term effects of the infection at the GI level are not yet deeply understood. In the current review, scientific literature including original research articles, clinical studies, epidemiological reports, and review-type articles concerning human intestinal infection with SARS-CoV-2 and the possible consequences on the microbiota were reviewed. Moreover, the following aspects pertaining to COVID-19 have also been discussed: transmission, resistance in the human body, the impact of nutritional status in relation to the intestinal microbiota, and the impact of comorbid metabolic disorders such as inflammatory bowel disease (IBS), obesity, and type two diabetes (T2D). The articles investigated show that health, age, and nutritional status are associated with specific communities of bacterial species in the gut, which could influence the clinical course of COVID-19 infection. Fecal microbiota alterations were associated with fecal concentrations of SARS-CoV-2 and COVID-19 severity. Patients suffering from metabolic and gastrointestinal (GI) disorders are thought to be at a moderate-to-high risk of infection with SARS-CoV-2, indicating the direct implication of gut dysbiosis in COVID-19 severity. However, additional efforts are required to identify the initial GI symptoms of COVID-19 for possible early intervention.


Assuntos
COVID-19/microbiologia , Disbiose/etiologia , Microbioma Gastrointestinal , Pandemias , SARS-CoV-2/fisiologia , Animais , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/transmissão , Comorbidade , Diabetes Mellitus Tipo 2/epidemiologia , Diabetes Mellitus Tipo 2/microbiologia , Reservatórios de Doenças/virologia , Enterócitos/patologia , Enterócitos/virologia , Fezes/microbiologia , Fezes/virologia , Gastroenteropatias/etiologia , Gastroenteropatias/microbiologia , Humanos , Síndrome do Intestino Irritável/epidemiologia , Síndrome do Intestino Irritável/microbiologia , Síndrome Metabólica/epidemiologia , Síndrome Metabólica/microbiologia , Obesidade/epidemiologia , Obesidade/microbiologia , Fatores de Risco , SARS-CoV-2/isolamento & purificação , SARS-CoV-2/patogenicidade
13.
Biomolecules ; 10(12)2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256040

RESUMO

In the present work, was investigated the separation and purification procedure of the biogenic 1,3-propanediol (1,3-PD), which is a well-known valuable compound in terms of bio-based plastic materials development. The biogenic 1,3-PD was obtained as a major metabolite through the glycerol fermentation by Klebsiella pneumoniae DSMZ 2026 and was subjected to separation and purification processes. A strong acidic ion exchange resin in H+ form was used for 1,3-PD purification from the aqueous solution previously obtained by broth flocculation. The eluent volume was investigated considering the removal of the secondary metabolites such as organic acids (acetic, citric, lactic, and succinic acids) and 2,3-butanediol (2,3-BD), and unconsumed glycerol. It was observed that a volume of 84 mL of ethanol 75% loaded with a flow rate of 7 mL/min completely remove the secondary metabolites from 10 mL of concentrated fermented broth, and pure biogenic 1,3-PD was recovered in 128 mL of the eluent.


Assuntos
Fermentação , Glicerol/metabolismo , Resinas de Troca Iônica/metabolismo , Klebsiella pneumoniae/química , Propilenoglicóis/isolamento & purificação , Floculação , Glicerol/química , Concentração de Íons de Hidrogênio , Resinas de Troca Iônica/química , Klebsiella pneumoniae/metabolismo , Propilenoglicóis/química , Propilenoglicóis/metabolismo
14.
Polymers (Basel) ; 12(3)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131384

RESUMO

In the current work the physicochemical features of poly(vinyl alcohol) (PVOH) biofilms, enriched with eco-friendly polyols and with carotenoid-rich extracts, were investigated. The polyols, such as glycerol (Gly), 1,3-propanediol (PDO), and 2,3-butanediol (BDO) were used as plasticizers and the tomato-based pigments (TP) as coloring agents. The outcomes showed that ß-carotene was the major carotenoid in the TP (1.605 mg ß-carotene/100 DW), which imprinted the orange color to the biofilms. The flow behavior indicated that with the increase of shear rate the viscosity of biofilm solutions also increased until 50 s-1, reaching values at 37 °C of approximately 9 ± 0.5 mPa·s for PVOH, and for PVOH+TP, 14 ± 0.5 mPa·s in combination with Gly, PDO, and BDO. The weight, thickness, and density of samples increased with the addition of polyols and TP. Biofilms with TP had lower transparency values compared with control biofilms (without vegetal pigments). The presence of BDO, especially, but also of PDO and glycerol in biofilms created strong bonds within the PVOH matrix by increasing their mechanical resistance. The novelty of the present approach relies on the replacement of synthetic colorants with natural pigments derived from agro-industrial by-products, and the use of a combination of biodegradable polymers and polyols, as an integrated solution for packaging application in the bioplastic industry.

15.
Adv Food Nutr Res ; 91: 157-225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32035596

RESUMO

Fruits and vegetables are essential for human nutrition, delivering a substantial proportion of vitamins, minerals, and fibers in our daily diet. Unfortunately, half the fruits and vegetables produced worldwide end up as wastes, generating environmental issues caused mainly by microbial degradation. Most wastes are generated by industrial processing, the so-called by-products. These by-products still contain many bioactive compounds post-processing, such as macronutrients (proteins and carbohydrates) and phytochemicals (polyphenols and carotenoids). Recently, the recovery of these bioactive compounds from industry by-products has received significant attention, mainly due to their possible health benefits for humans. This chapter focuses on the bioactive potential of fruit and vegetable by-products with possible applications in the food industry (functional foods) and in the health sector (nutraceuticals).


Assuntos
Indústria Alimentícia , Frutas/química , Resíduos Industriais , Compostos Fitoquímicos/química , Compostos Fitoquímicos/farmacologia , Verduras/química , Humanos , Eliminação de Resíduos
16.
Pathogens ; 8(4)2019 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-31835652

RESUMO

Despite being a well-known human pathogen, Klebsiella pneumoniae plays a significant role in the biotechnology field, being considered as a microbial cell factory in terms of valuable chemical biosynthesis. In this work, Klebsiella pneumoniae DSMZ 2026 was investigated for its potential to biosynthesize 1,3-propanediol (PDO) and 2,3-butanediol (BDO) during batch fermentation under controlled and uncontrolled pH levels. The bacterial strain was cultivated at a bioreactor level, and it was inoculated in 2 L of specific mineral broth containing 50 g/L of glycerol as the main carbon source. The process was conducted under anaerobic conditions at 37 °C and 180 RPM (rotations per minute) for 24 h. The effect of pH oscillation on the biosynthesis of PDO and BDO was investigated. Samples were taken every 3 h and specific tests were performed: pH measurement, main substrate consumption, PDO and BDO production. The cell morphology was analyzed on both solid and liquid media. After 24 h of cultivation, the maximum concentrations of PDO and BDO were 28.63 ± 2.20 g/L and 18.10 ± 1.10 g/L when the pH value was maintained at 7. Decreased concentrations of PDO and BDO were achieved (11.08 ± 0.14 g/L and 7.35 ± 0.00 g/L, respectively) when the pH level was not maintained at constant values. Moreover, it was identified the presence of other metabolites (lactic, citric, and succinic acids) in the cultivation media at the beginning of the process, after 12 h and 24 h of cultivation.

17.
Microorganisms ; 7(8)2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31426397

RESUMO

Used kitchen oil represents a feasible and renewable biomass to produce green biofuels such as biodiesel. Biodiesel production generates large amounts of by-products such as the crude glycerol fraction, which can be further used biotechnologically as a valuable nutrient for many microorganisms. In this study, we transesterified used kitchen oil with methanol and sodium hydroxide in order to obtain biodiesel and crude glycerol fractions. The crude glycerol fraction consisting of 30% glycerol was integrated into a bioreactor cultivation process as a nutrient source for the growth of Candida zeylanoides ATCC 20367. Cell viability and biomass production were similar to those obtained with batch cultivations on pure glycerol or glucose as the main nutrient substrates. However, the biosynthesis of organic acids (e.g., citric and succinic) was significantly different compared to pure glycerol and glucose used as main carbon sources.

18.
Microb Cell Fact ; 16(1): 190, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29110678

RESUMO

Today, biofuels represent a hot topic in the context of petroleum and adjacent products decrease. As biofuels production increase, so does the production of their major byproduct, namely crude glycerol. The efficient usage of raw glycerol will concur to the biodiesel viability. As an inevitable waste of biodiesel manufacturing, glycerol is potentially an attractive substrate for the production of value-added products by fermentation processes, due to its large amounts, low cost and high degree of reduction. One of the most important usages of glycerol is its bioconversion through microbial fermentation to value-added materials like 1,3-propanediol and citric acid. There is a considerable industrial interest in 1,3-propanediol and citric acid production based on microbial fermentations, as it seems to be in competition with traditional technologies utilized for these products. In the present work, yields and concentrations of 1,3-propanediol and citric acid registered for different isolated strains are also described. Microbial bioconversion of glycerol represents a remarkable choice to add value to the biofuel production chain, allowing the biofuel industry to be more competitive. The current review presents certain ways for the bioconversion of crude glycerol into citric acid and 1,3-propanediol with high yields and concentrations achieved by using isolated microorganisms.


Assuntos
Biocombustíveis , Ácido Cítrico/metabolismo , Glicerol/metabolismo , Propilenoglicóis/metabolismo , Bactérias/metabolismo , Biotecnologia , Fermentação , Glicerol/química , Microbiologia Industrial/métodos , Propilenoglicóis/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...