Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 46(23): 5866-5869, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34851910

RESUMO

We identify the physical factors that limit the terahertz (THz) yield of an optical rectification (OR) of ultrashort multiterawatt laser pulses in large-area quadratically nonlinear crystals. We show that the THz yield tends to slow its growth as a function of the laser driver energy, saturate, and eventually decrease as the laser beam picks up a spatiotemporal phase due to the intensity-dependent refraction of the OR crystal. We demonstrate that, with a careful management of the driver intensity aimed at keeping the nonlinear length larger than the coherence length, OR-based broadband THz generation in large-area lithium niobate (LN) crystals is energy-scalable, enabling an OR of multiterawatt laser pulses, yielding ∼10µJ/cm2 of THz output energy per unit crystal area. With a 27-fs, 10-TW, 800-nm Ti:sapphire laser output used as a driver for OR in large-area LN crystals, this approach is shown to provide a THz output with a pulse energy above 10 µJ and a bandwidth extending well beyond 6 THz, supporting single-cycle THz waveforms.

2.
Opt Lett ; 46(13): 3219-3222, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-34197420

RESUMO

Spectral analysis of high-order harmonics generated by ultrashort mid-infrared pulses in molecular nitrogen reveals well-resolved signatures of inverse Raman scattering, showing up near the frequencies of prominent vibrational transitions of nitrogen molecules. When tuned on a resonance with the v'=0→v''=0 pathway within the B3Πg→C3Πu second positive system of molecular nitrogen, the eleventh harmonic of a 3.9 µm, 80 fs driver is shown to acquire a distinctive antisymmetric spectral profile with red-shifted bright and blue-shifted dark features as indicators of stimulated Raman gain and loss. This high-harmonic setting extends the inverse Raman effect to a vast class of strong-field light-matter interaction scenarios.

3.
Opt Lett ; 46(5): 1081-1084, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33649662

RESUMO

Ultrafast ionization of a gas medium driven by ultrashort midinfrared laser pulses provides a source of bright ultrabroadband radiation whose spectrum spans across the entire microwave band, reaching for the sub-gigahertz range. We combine multiple, mutually complementary detection techniques to provide an accurate polarization-resolved characterization of this broadband output as a function of the gas pressure. At low gas pressures, the lowest-frequency part of this output is found to exhibit a drastic enhancement as this field builds up its coherence, developing a well-resolved emission cone, dominated by a radial radiation energy flux. This behavior of the intensity, coherence, and polarization of the microwave output is shown to be consistent with Cherenkov-type radiation by ponderomotively driven plasma currents.

4.
Opt Lett ; 45(3): 750-753, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32004301

RESUMO

Coherent-wake plasma emission induced by ultrashort mid-infrared laser pulses on a solid target is shown to give rise to high-brightness, high-order harmonic radiation, offering a promising source of attosecond pulses and a probe for ultrafast subrelativistic plasma dynamics. With 80-fs, 0.2-TW pulses of 3.9-µm radiation used as a driver, optical harmonics up to the 34th order are detected, with their spectra stretching from the mid-infrared region to the extreme ultraviolet region. The harmonic spectrum is found to be highly sensitive to the chirp of the driver. Particle-in-cell analysis of this effect suggests, in agreement with the generic scenario of coherent-wake emission, that optical harmonics are radiated as trains of extremely short, attosecond ultraviolet pulses with a pulse-to-pulse interval varying over the pulse train. A positive chirp of the driver pulse can partially compensate for this variation in the interpulse separation, allowing harmonics of the highest orders to be generated in the plasma emission spectrum.

5.
Opt Lett ; 44(9): 2173-2176, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-31042176

RESUMO

Formation of light bullets-tightly localized in space and time light packets, retaining their spatiotemporal shape during propagation-is, for the first time, experimentally observed and investigated in a new regime of mid-infrared filamentation in ambient air. It is suggested that the light bullets generated in ambient air by multi-mJ, positively chirped 3.9-µm pulses originate from a dynamic interplay between the anomalous dispersion in the vicinity of CO2 resonance and positive chirp, both intrinsic, carried by the driver pulse, and accumulated, originating from nonlinear propagation in air. By adjusting the initial chirp of the driving pulses, one can control the spatial beam profile, energy losses, and spectral-temporal dynamics of filamenting pulses and deliver sub-3-cycle mid-IR pulses in high-quality beam on a remote target.

6.
Opt Lett ; 44(8): 1888-1891, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985767

RESUMO

Polarization maps of high-order harmonics are shown to enable a full vectorial characterization of petahertz electron currents generated in a crystalline solid by an ultrashort laser driver. As a powerful resource of this methodology, analysis of energy-momentum dispersion landscapes, defined by the electron band structure, can help identify, as our analysis shows, special directions within the Brillouin zone that can provide a preferable basis for polarization-sensitive high-harmonic mapping of anisotropic petahertz photocurrents in solids.

7.
Opt Lett ; 43(22): 5571-5574, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30439897

RESUMO

High-order harmonic generation (HHG) in plasmas induced by ultrashort, relativistic-intensity laser pulses on solid surfaces can provide an efficient source of attosecond pulses and opens routes toward new regimes of laser-matter interactions, x-ray generation, laser particle acceleration, and relativistic nonlinear optics. However, field intensities in the range of Irel∼1019 W/cm2 are typically needed to achieve the relativistic regime of HHG in experiments with near-infrared laser pulses. Here, we show that, in the mid-infrared range, due to the λ-2 scaling of Irel with the driver wavelength λ, relativistic HHG can be observed at much lower levels of laser field intensities. High-peak-power 80-fs, 3.9-µm pulses are focused in our experiments on a solid surface to provide field intensities in the range of 1017 W/cm2. Remarkably, this level of field intensities, considered as low by the standards of relativistic optics in the near infrared, is shown to be sufficient for generation of high-order harmonics with signature properties of relativistic HHG-beam directionality, spectra with extended plateaus, and a high HHG yield sustained for both p- and s-polarized driver fields.

8.
Opt Lett ; 43(9): 2185-2188, 2018 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714785

RESUMO

Properties of filaments ignited by multi-millijoule, 90 fs mid-infrared pulses centered at 3.9 µm are examined experimentally by monitoring plasma density, losses, spectral dynamics and beam profile evolution at different focusing strengths. By changing from strong (f=0.25 m) to loose (f=7 m) focusing, we observe a shift from plasma-assisted filamentation to filaments with low plasma density. In the latter case, filamentation manifests itself by beam self-symmetrization and spatial self-channeling. Spectral dynamics in the case of loose focusing is dominated by the nonlinear Raman frequency downshift, which leads to the overlap with the CO2 resonance in the vicinity of 4.2 µm. The dynamic CO2 absorption in the case of 3.9 µm filaments with their low plasma content is the main mechanism of energy losses and, either alone or together with other nonlinear processes, contributes to the arrest of intensity.

9.
Sci Rep ; 7(1): 2103, 2017 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-28522858

RESUMO

We present experimental studies of long-distance transmission of ultrashort mid-infrared laser pulses through atmospheric air, probing air dispersion in the 3.6-4.2-µm wavelength range. Atmospheric air is still highly transparent to electromagnetic radiation in this spectral region, making it interesting for long-distance signal transmission. However, unlike most of the high-transmission regions in gas media, the group-velocity dispersion, as we show in this work, is anomalous at these wavelengths due to the nearby asymmetric-stretch rovibrational band of atmospheric carbon dioxide. The spectrograms of ultrashort mid-infrared laser pulses transmitted over a distance of 60 m in our experiments provide a map of air dispersion in this wavelength range, revealing clear signatures of anomalous dispersion, with anomalous group delays as long as 1.8 ps detected across the bandwidth covered by 80-fs laser pulses.

10.
Opt Lett ; 41(15): 3479-82, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472598

RESUMO

Angle-resolved spectral analysis of a multioctave high-energy supercontinuum output of mid-infrared laser filaments is shown to provide a powerful tool for understanding intricate physical scenarios behind laser-induced filamentation in the mid-infrared. The ellipticity of the mid-infrared driver beam breaks the axial symmetry of filamentation dynamics, offering a probe for a truly (3+1)-dimensional spatiotemporal evolution of mid-IR pulses in the filamentation regime. With optical harmonics up to the 15th order contributing to supercontinuum generation in such filaments alongside Kerr-type and ionization-induced nonlinearities, the output supercontinuum spectra span over five octaves from the mid-ultraviolet deep into the mid-infrared. Full (3+1)-dimensional field evolution analysis is needed for an adequate understanding of this regime of laser filamentation. Supercomputer simulations implementing such analysis articulate the critical importance of angle-resolved measurements for both descriptive and predictive power of filamentation modeling. Strong enhancement of ionization-induced blueshift is shown to offer new approaches in filamentation-assisted pulse compression, enabling the generation of high-power few- and single-cycle pulses in the mid-infrared.

11.
Opt Lett ; 40(9): 2068-71, 2015 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-25927786

RESUMO

A high-energy supercontinuum spanning 4.7 octaves, from 250 to 6500 nm, is generated using a 0.3-TW, 3.9-µm output of a mid-infrared optical parametric chirped-pulse amplifier as a driver inducing a laser filament in the air. The high-frequency wing of the supercontinuum spectrum is enhanced by odd-order optical harmonics of the mid-infrared driver. Optical harmonics up to the 15th order are observed in supercontinuum spectra as overlapping, yet well-resolved peaks broadened, as verified by numerical modeling, due to spatially nonuniform ionization-induced blue shift.


Assuntos
Raios Infravermelhos , Lasers , Raios Ultravioleta , Fenômenos Ópticos
12.
Sci Rep ; 5: 8368, 2015 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-25687621

RESUMO

Filamentation of ultrashort laser pulses in the atmosphere offers unique opportunities for long-range transmission of high-power laser radiation and standoff detection. With the critical power of self-focusing scaling as the laser wavelength squared, the quest for longer-wavelength drivers, which would radically increase the peak power and, hence, the laser energy in a single filament, has been ongoing over two decades, during which time the available laser sources limited filamentation experiments in the atmosphere to the near-infrared and visible ranges. Here, we demonstrate filamentation of ultrashort mid-infrared pulses in the atmosphere for the first time. We show that, with the spectrum of a femtosecond laser driver centered at 3.9 µm, right at the edge of the atmospheric transmission window, radiation energies above 20 mJ and peak powers in excess of 200 GW can be transmitted through the atmosphere in a single filament. Our studies reveal unique properties of mid-infrared filaments, where the generation of powerful mid-infrared supercontinuum is accompanied by unusual scenarios of optical harmonic generation, giving rise to remarkably broad radiation spectra, stretching from the visible to the mid-infrared.

13.
Opt Lett ; 39(16): 4659-62, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25121842

RESUMO

Laser filamentation is understood to be self-channeling of intense ultrashort laser pulses achieved when the self-focusing because of the Kerr nonlinearity is balanced by ionization-induced defocusing. Here, we show that, right behind the ionized region of a laser filament, ultrashort laser pulses can couple into a much longer light channel, where a stable self-guiding spatial mode is sustained by the saturable self-focusing nonlinearity. In the limiting regime of negligibly low ionization, this post-filamentation beam dynamics converges to a large-scale beam self-trapping scenario known since the pioneering work on saturable self-focusing nonlinearities.

14.
Med Eng Phys ; 33(2): 234-9, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21044856

RESUMO

Bone drilling is widely used in orthopaedics and surgery; it is a technically demanding surgical procedure. Recent technological improvements in this area are focused on efforts to reduce forces in bone drilling. This study focuses on forces and a torque required for conventional and ultrasonically-assisted tool penetration into fresh bovine cortical bone. Drilling tests were performed with two drilling techniques, and the influence of drilling speed, feed rate and parameters of ultrasonic vibration on the forces and torque was studied. Ultrasonically-assisted drilling (UAD) was found to reduce a drilling thrust force and torque compared to conventional drilling (CD). The mechanism behind lower levels of forces and torque was explored, using high-speed filming of a drill-bone interaction zone, and was linked to the chip shape and character of its formation. It is expected that UAD will produce holes with minimal effort and avoid unnecessary damage and accompanying pain during the incision.


Assuntos
Osso e Ossos/cirurgia , Procedimentos Ortopédicos/instrumentação , Animais , Bovinos , Desenho de Equipamento/instrumentação , Análise de Falha de Equipamento/instrumentação , Fêmur/cirurgia , Procedimentos Cirúrgicos Minimamente Invasivos/métodos , Equipamentos Ortopédicos , Ortopedia/métodos , Torque , Resultado do Tratamento , Ultrassom/instrumentação
15.
Appl Opt ; 48(5): 834-41, 2009 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-19209193

RESUMO

We describe the fabrication and performance of diffractive filters designed for space-based x-ray and EUV solar observations. Unlike traditional thin film filters, diffractive filters can be made to have a high resistance against the destructive mechanical and acoustic loads of a satellite launch. The filters studied are made of plastic track-etched membranes that are metal-coated on one side only. They have all-through open cylindrical pores with diameters as small as 500 nm, limiting their transmittance to very short wavelengths. The spectral transmittance of various diffractive filters with different pore parameters was measured from the soft x-ray to the near IR range (namely, from 1-1100 nm).

16.
Phys Rev E Stat Nonlin Soft Matter Phys ; 75(1 Pt 2): 016614, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17358282

RESUMO

While the standard scenario of third-harmonic generation (THG) by a dispersive-wave pump involves the emission of light with a frequency 3omega, thrice the frequency omega of the input pump field, solitons undergoing a continuous shift of their central frequency omega due to the Raman effect in a multimode optical fiber can generate the third harmonic in a different fashion. In the experiments reported here, we provide the first direct experimental evidence of THG by a continuously red-shifting soliton pump by studying the third-harmonic buildup in relation to the spectral evolution of the soliton pump field in a silica photonic-crystal fiber (PCF). We show that solitons excited in a PCF by unamplified femtosecond pulses of a Cr:forsterite laser sweep through the spectral range from 1.25 to 1.63 microm , scanning through a manifold of THG phase-matching resonances with 3omega dispersive waves in PCF modes. As a result, intense third-harmonic peaks build up in the range of wavelengths from 370 to 550 nm at the output of the fiber, making PCF a convenient fiber-format multifrequency source of short-wavelength radiation. Time-resolved fluorescence measurements with photoexcitation provided by the third-harmonic PCF output are presented, demonstrating the high potential of PCF sources for an ultrafast photoexcitation of fluorescent molecular systems in physics, chemistry, and biology.

17.
Ultrasonics ; 42(1-9): 81-6, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15047265

RESUMO

Ultrasonically assisted turning of modern aviation materials is conducted with ultrasonic vibration (frequency f approximately 20 kHz, amplitude a approximately 15 microm) superimposed on the cutting tool movement. An autoresonant control system is used to maintain the stable nonlinear resonant mode of vibration throughout the cutting process. Experimental comparison of roughness and roundness for workpieces machined conventionally and with the superimposed ultrasonic vibration, results of high-speed filming of the turning process and nanoindentation analyses of the microstructure of the machined material are presented. The suggested finite-element model provides numerical comparison between conventional and ultrasonic turning of Inconel 718 in terms of stress/strain state, cutting forces and contact conditions at the workpiece/tool interface.

18.
J Xray Sci Technol ; 7(3): 233-47, 1997 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21311120

RESUMO

The RES-C grazing incidence XUV spectroheliograph has been developed in the P. N. Lebedev Physical Institute (FIAN) as a part of the CORONAS-I project. Its objective is to obtain images of the full Sun in monochromatic lines over the spectral range of 180–210Å, which includes prominent emission from ions of Fe VIII–Fe~XIII, O VI, and Fe XXIV. Here, we describe the optical scheme of the spectroheliograph, and show results of XUV testing of its individual component elements as well as of the complete assembled instrument. XUV measurements were made of the absolute diffraction efficiency and stray-light level for both holographic and mechanically ruled gratings, the spectral reflectivity of the multilayer-coated mirrors, the transmittance of the thin aluminum blocking filters, and the combined spectral efficiency of the whole instrument. The spectral and spatial resolutions of the spectroheliograph were measured by recording spectrally dispersed images of a laser plasma source in monochromatic lines of fluorine ions between 185–200Å. For comparison, we also present spectral images of the Sun obtained with the spectroheliograph as flown on the CORONAS-I satellite mission.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA