Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phytopathology ; 114(5): 1020-1027, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38114080

RESUMO

Invasive fungal diseases represent a major threat to forest ecosystems worldwide. As the application of fungicides is often unfeasible and not a sustainable solution, only a few other control options are available, including biological control. In this context, the use of parasitic mycoviruses as biocontrol agents of fungal pathogens has recently gained particular attention. Since the 1990s, the Asian fungus Hymenoscyphus fraxineus has been causing lethal ash dieback across Europe. In the present study, we investigated the biocontrol potential of the mitovirus Hymenoscyphus fraxineus mitovirus 2 (HfMV2) previously identified in Japanese populations of the pathogen. HfMV2 could be successfully introduced via co-culturing into 16 of 105 HfMV2-free isolates. Infection with HfMV2 had contrasting effects on fungal growth in vitro, from cryptic to detrimental or beneficial. Virus-infected H. fraxineus isolates whose growth was reduced by HfMV2 showed overall a lower virulence on ash (Fraxinus excelsior) saplings as compared with their isogenic HfMV2-free lines. The results suggest that mycoviruses exist in the native populations of H. fraxineus in Asia that have the potential for biological control of ash dieback in Europe. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Ascomicetos , Fraxinus , Micovírus , Doenças das Plantas , Fraxinus/microbiologia , Fraxinus/virologia , Doenças das Plantas/microbiologia , Doenças das Plantas/virologia , Doenças das Plantas/prevenção & controle , Micovírus/fisiologia , Micovírus/isolamento & purificação , Ascomicetos/virologia , Ascomicetos/fisiologia , Virulência , Controle Biológico de Vetores , Agentes de Controle Biológico
2.
Plant Cell Environ ; 44(12): 3515-3525, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34562029

RESUMO

Environmental heterogeneity is a major driver of plant-microbiome assembly, but the specific climate and soil conditions that are involved remain poorly understood. To better understand plant microbiome formation, we examined the bacteria and fungi that colonize wild strawberry (Fragaria vesca) plants in North American and European populations. Using transects as replicates, we found strong overlap among the environmental conditions that best predict the overall similarity and richness of the plant microbiome, including soil nutrients that replicate across continents. Temperature is also among the main predictors of diversity for both bacteria and fungi in both the leaf and, unexpectedly, the root microbiome. Our results indicate that a small number of environmental factors, and their interactions, consistently contribute to plant microbiome formation, which has implications for predicting the contributions of microbes to plant productivity in ever-changing environments.


Assuntos
Fenômenos Fisiológicos Bacterianos , Meio Ambiente , Fragaria/microbiologia , Fungos/fisiologia , Microbiota , Microbiologia do Solo , Europa (Continente) , América do Norte
3.
Sci Rep ; 9(1): 24, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-30631088

RESUMO

Roots provide plants mineral nutrients and stability in soil; while doing so, they come into contact with diverse soil microbes that affect plant health and productivity. Despite their ecological and agricultural relevance, the factors that shape the root microbiome remain poorly understood. We grew a worldwide panel of replicated Arabidopsis thaliana accessions outdoors and over winter to characterize their root-microbial communities. Although studies of the root microbiome tend to focus on bacteria, we found evidence that fungi have a strong influence on the structure of the root microbiome. Moreover, host effects appear to have a stronger influence on plant-fungal communities than plant-bacterial communities. Mapping the host genes that affect microbiome traits identified a priori candidate genes with roles in plant immunity; the root microbiome also appears to be strongly affected by genes that impact root and root hair development. Our results suggest that future analyses of the root microbiome should focus on multiple kingdoms, and that the root microbiome is shaped not only by genes involved in defense, but also by genes involved in plant form and physiology.


Assuntos
Arabidopsis/microbiologia , Bactérias/classificação , Fungos/classificação , Interações entre Hospedeiro e Microrganismos , Microbiota , Raízes de Plantas/microbiologia , Bactérias/genética , Fungos/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...