Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38645260

RESUMO

Ergothioneine (EGT) is a diet-derived, atypical amino acid that accumulates to high levels in human tissues. Reduced EGT levels have been linked to age-related disorders, including neurodegenerative and cardiovascular diseases, while EGT supplementation is protective in a broad range of disease and aging models in mice. Despite these promising data, the direct and physiologically relevant molecular target of EGT has remained elusive. Here we use a systematic approach to identify how mitochondria remodel their metabolome in response to exercise training. From this data, we find that EGT accumulates in muscle mitochondria upon exercise training. Proteome-wide thermal stability studies identify 3-mercaptopyruvate sulfurtransferase (MPST) as a direct molecular target of EGT; EGT binds to and activates MPST, thereby boosting mitochondrial respiration and exercise training performance in mice. Together, these data identify the first physiologically relevant EGT target and establish the EGT-MPST axis as a molecular mechanism for regulating mitochondrial function and exercise performance.

2.
Mol Metab ; 82: 101912, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38458566

RESUMO

OBJECTIVE: Skeletal muscle plasticity and remodeling are critical for adapting tissue function to use, disuse, and regeneration. The aim of this study was to identify genes and molecular pathways that regulate the transition from atrophy to compensatory hypertrophy or recovery from injury. Here, we have used a mouse model of hindlimb unloading and reloading, which causes skeletal muscle atrophy, and compensatory regeneration and hypertrophy, respectively. METHODS: We analyzed mouse skeletal muscle at the transition from hindlimb unloading to reloading for changes in transcriptome and extracellular fluid proteome. We then used qRT-PCR, immunohistochemistry, and bulk and single-cell RNA sequencing data to determine Mustn1 gene and protein expression, including changes in gene expression in mouse and human skeletal muscle with different challenges such as exercise and muscle injury. We generated Mustn1-deficient genetic mouse models and characterized them in vivo and ex vivo with regard to muscle function and whole-body metabolism. We isolated smooth muscle cells and functionally characterized them, and performed transcriptomics and proteomics analysis of skeletal muscle and aorta of Mustn1-deficient mice. RESULTS: We show that Mustn1 (Musculoskeletal embryonic nuclear protein 1, also known as Mustang) is highly expressed in skeletal muscle during the early stages of hindlimb reloading. Mustn1 expression is transiently elevated in mouse and human skeletal muscle in response to intense exercise, resistance exercise, or injury. We find that Mustn1 expression is highest in smooth muscle-rich tissues, followed by skeletal muscle fibers. Muscle from heterozygous Mustn1-deficient mice exhibit differences in gene expression related to extracellular matrix and cell adhesion, compared to wild-type littermates. Mustn1-deficient mice have normal muscle and aorta function and whole-body glucose metabolism. We show that Mustn1 is secreted from smooth muscle cells, and that it is present in arterioles of the muscle microvasculature and in muscle extracellular fluid, particularly during the hindlimb reloading phase. Proteomics analysis of muscle from Mustn1-deficient mice confirms differences in extracellular matrix composition, and female mice display higher collagen content after chemically induced muscle injury compared to wild-type littermates. CONCLUSIONS: We show that, in addition to its previously reported intracellular localization, Mustn1 is a microprotein secreted from smooth muscle cells into the muscle extracellular space. We explore its role in muscle ECM deposition and remodeling in homeostasis and upon muscle injury. The role of Mustn1 in fibrosis and immune infiltration upon muscle injury and dystrophies remains to be investigated, as does its potential for therapeutic interventions.


Assuntos
Micropeptídeos , Músculo Esquelético , Animais , Feminino , Humanos , Camundongos , Matriz Extracelular/metabolismo , Hipertrofia/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Miócitos de Músculo Liso/metabolismo
3.
bioRxiv ; 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38260676

RESUMO

Zinc is an essential micronutrient that regulates a wide range of physiological processes, principally through Zn 2+ binding to protein cysteine residues. Despite being critical for modulation of protein function, for the vast majority of the human proteome the cysteine sites subject to regulation by Zn 2+ binding remain undefined. Here we develop ZnCPT, a comprehensive and quantitative mapping of the zinc-regulated cysteine proteome. We define 4807 zinc-regulated protein cysteines, uncovering protein families across major domains of biology that are subject to either constitutive or inducible modification by zinc. ZnCPT enables systematic discovery of zinc-regulated structural, enzymatic, and allosteric functional domains. On this basis, we identify 52 cancer genetic dependencies subject to zinc regulation, and nominate malignancies sensitive to zinc-induced cytotoxicity. In doing so, we discover a mechanism of zinc regulation over Glutathione Reductase (GSR) that drives cell death in GSR-dependent lung cancers. We provide ZnCPT as a resource for understanding mechanisms of zinc regulation over protein function.

4.
Mol Cell ; 83(11): 1903-1920.e12, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37267907

RESUMO

Exercise benefits the human body in many ways. Irisin is secreted by muscle, increased with exercise, and conveys physiological benefits, including improved cognition and resistance to neurodegeneration. Irisin acts via αV integrins; however, a mechanistic understanding of how small polypeptides like irisin can signal through integrins is poorly understood. Using mass spectrometry and cryo-EM, we demonstrate that the extracellular heat shock protein 90α (eHsp90α) is secreted by muscle with exercise and activates integrin αVß5. This allows for high-affinity irisin binding and signaling through an Hsp90α/αV/ß5 complex. By including hydrogen/deuterium exchange data, we generate and experimentally validate a 2.98 Å RMSD irisin/αVß5 complex docking model. Irisin binds very tightly to an alternative interface on αVß5 distinct from that used by known ligands. These data elucidate a non-canonical mechanism by which a small polypeptide hormone like irisin can function through an integrin receptor.


Assuntos
Comunicação Celular , Fibronectinas , Humanos , Fibronectinas/metabolismo , Transdução de Sinais
5.
Cell Metab ; 35(3): 535-549.e7, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36681077

RESUMO

Proteins are secreted from cells to send information to neighboring cells or distant tissues. Because of the highly integrated nature of energy balance systems, there has been particular interest in myokines and adipokines. These are challenging to study through proteomics because serum or plasma contains highly abundant proteins that limit the detection of proteins with lower abundance. We show here that extracellular fluid (EF) from muscle and fat tissues of mice shows a different protein composition than either serum or tissues. Mass spectrometry analyses of EFs from mice with physiological perturbations, like exercise or cold exposure, allowed the quantification of many potentially novel myokines and adipokines. Using this approach, we identify prosaposin as a secreted product of muscle and fat. Prosaposin expression stimulates thermogenic gene expression and induces mitochondrial respiration in primary fat cells. These studies together illustrate the utility of EF isolation as a discovery tool for adipokines and myokines.


Assuntos
Líquido Extracelular , Saposinas , Camundongos , Animais , Líquido Extracelular/metabolismo , Saposinas/metabolismo , Músculos/metabolismo , Tecido Adiposo/metabolismo , Adipocinas
6.
Proc Natl Acad Sci U S A ; 119(36): e2204835119, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36044549

RESUMO

Physical activity provides clinical benefit in Parkinson's disease (PD). Irisin is an exercise-induced polypeptide secreted by skeletal muscle that crosses the blood-brain barrier and mediates certain effects of exercise. Here, we show that irisin prevents pathologic α-synuclein (α-syn)-induced neurodegeneration in the α-syn preformed fibril (PFF) mouse model of sporadic PD. Intravenous delivery of irisin via viral vectors following the stereotaxic intrastriatal injection of α-syn PFF cause a reduction in the formation of pathologic α-syn and prevented the loss of dopamine neurons and lowering of striatal dopamine. Irisin also substantially reduced the α-syn PFF-induced motor deficits as assessed behaviorally by the pole and grip strength test. Recombinant sustained irisin treatment of primary cortical neurons attenuated α-syn PFF toxicity by reducing the formation of phosphorylated serine 129 of α-syn and neuronal cell death. Tandem mass spectrometry and biochemical analysis revealed that irisin reduced pathologic α-syn by enhancing endolysosomal degradation of pathologic α-syn. Our findings highlight the potential for therapeutic disease modification of irisin in PD.


Assuntos
Corpo Estriado , Fibronectinas , Doença de Parkinson , alfa-Sinucleína , Animais , Corpo Estriado/metabolismo , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Fibronectinas/administração & dosagem , Fibronectinas/genética , Fibronectinas/metabolismo , Camundongos , Doença de Parkinson/metabolismo , Doença de Parkinson/terapia , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
7.
Mol Metab ; 42: 101085, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32956847

RESUMO

OBJECTIVE: Single-nucleotide polymorphisms in the FTO gene encoding an m6Am and an m6A demethylase are associated with obesity. Moreover, recent studies have linked a dysregulation of m6A modifications and its machinery, including FTO, to the development of several forms of cancers. However, the functional role of hepatic FTO in metabolism and the development and progression of hepatocellular carcinoma (HCC), a proteotypic obesity-associated cancer, remains unclear. Thus, we aimed to reveal the role of hepatic FTO in metabolism and in the initiation and progression of HCC in vivo. METHODS: We generated mice with hepatic FTO deficiency (FTOL-KO). The effect of hepatic FTO on metabolism was investigated by extensive metabolic phenotyping. To determine the impact of hepatic FTO on HCC development, FTOL-KO and Ctrl mice were subjected to long-term diethylnitrosamine (DEN)-induced HCC-development and the tumor initiation phase was examined via a short-term DEN protocol. RESULTS: In long-term DEN experiments, FTOL-KO mice exhibit increased HCC burden compared to Ctrl mice. In the tumor initiation phase, Ctrl mice display a dynamic regulation of FTO upon induction of liver damage, while this response is abrogated in FTO-deficient mice. Proteomic analyses revealed that liver damage-induced increases in FTO expression reduce CUL4A protein abundance. Functionally, simultaneous knockdown of Cul4a reverses the increased hepatocyte proliferation observed upon loss of FTO. CONCLUSION: Collectively, our study demonstrates that hepatic FTO is dispensable for the control of energy homeostasis and glucose metabolism. However, we show a protective function of FTO in liver carcinogenesis and suggest the FTO-dependent dynamic mRNA demethylation of Cul4a in the initiation of HCC development contributes to this effect.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Glucose/metabolismo , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Animais , Carcinoma Hepatocelular/metabolismo , Proliferação de Células/genética , Metabolismo Energético , Homeostase , Fígado/fisiologia , Neoplasias Hepáticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Polimorfismo de Nucleotídeo Único/genética , Proteômica/métodos , Transdução de Sinais/genética
8.
Cancers (Basel) ; 11(1)2018 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-30591653

RESUMO

Obesity promotes the development of numerous cancers, such as liver and colorectal cancers, which is at least partly due to obesity-induced, chronic, low-grade inflammation. In particular, the recruitment and activation of immune cell subsets in the white adipose tissue systemically increase proinflammatory cytokines, such as tumor necrosis factor α (TNFα) and interleukin-6 (IL-6). These proinflammatory cytokines not only impair insulin action in metabolic tissues, but also favor cancer development. Here, we review the current state of knowledge on how obesity affects inflammatory TNFα and IL-6 signaling in hepatocellular carcinoma and colorectal cancers.

9.
Mol Metab ; 17: 122-133, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30224299

RESUMO

OBJECTIVE: The current obesity pandemic represents a major health burden, given that it predisposes to the development of numerous obesity-associated disorders. The obesity-derived adipokines not only impair systemic insulin action but also increase the incidence of hepatocellular carcinoma (HCC), a highly prevalent cancer with poor prognosis. Thus, worldwide incidences of HCC are expected to further increase, and defining the molecular as well as cellular mechanisms will allow for establishing new potential treatment options. The adipose tissue of obese individuals increases circulating leptin and interleukin-6 (IL-6) levels, which both share similar signaling capacities such as Signal Transducer and Activator of Transcription 3 (STAT3) and Phosphoinositide 3-kinase (PI3K)/Akt activation. While mouse models with deficient IL-6 signaling show an ameliorated but not absent Diethylnitrosamine (DEN)-induced HCC development, the morbid obesity in mice with mutant leptin signaling complicates the dissection of hepatic leptin receptor (LEPR) and IL-6 signaling in HCC development. Here we have investigated the function of compensating hepatic LEPR expression in HCC development of IL-6Rα-deficient mice. METHODS: We generated and characterized a mouse model of hepatic LEPR deficiency that was intercrossed with IL-6Rα-deficient mice. Cohorts of single and double knockout mice were subjected to the DEN-HCC model to ascertain liver cancer development and characterize metabolic alterations. RESULTS: We demonstrate that both high-fat diet (HFD)-induced obesity and IL-6Rα deficiency induce hepatic Lepr expression. Consistently, double knockout mice show a further reduction in tumor burden in DEN-induced HCC when compared to control and single LepRL-KO/IL-6Rα knock out mice, whereas metabolism remained largely unaltered between the genotypes. CONCLUSIONS: Our findings reveal a compensatory role for hepatic LEPR in HCC development of IL-6Rα-deficient mice and suggest hepatocyte-specific leptin signaling as promoter of HCC under obese conditions.


Assuntos
Subunidade alfa de Receptor de Interleucina-6/deficiência , Neoplasias Hepáticas Experimentais/metabolismo , Receptores para Leptina/biossíntese , Animais , Proliferação de Células/fisiologia , Dieta Hiperlipídica , Dietilnitrosamina , Modelos Animais de Doenças , Feminino , Expressão Gênica , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Hepatócitos/patologia , Subunidade alfa de Receptor de Interleucina-6/genética , Subunidade alfa de Receptor de Interleucina-6/metabolismo , Leptina/metabolismo , Metabolismo dos Lipídeos , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/genética , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...