Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(16)2024 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-38666570

RESUMO

The interaction between ammonia (NH3) and (alumino)silicates is of fundamental and applied importance, yet the specifics of NH3 adsorption on silicate surfaces remain largely unexplored, mainly because of experimental challenges related to their electrically insulating nature. An example of this knowledge gap is evident in the context of ice nucleation on silicate dust, wherein the role of NH3 for ice nucleation remains debated. This study explores the fundamentals of the interaction between NH3 and microcline feldspar (KAlSi3O8), a common aluminosilicate with outstanding ice nucleation abilities. Atomically resolved non-contact atomic force microscopy, x-ray photoelectron spectroscopy, and density functional theory-based calculations elucidate the adsorption geometry of NH3 on the lowest-energy surface of microcline, the (001) facet, and its interplay with surface hydroxyls and molecular water. NH3 and H2O are found to adsorb molecularly in the same adsorption sites, creating H-bonds with the proximate surface silanol (Si-OH) and aluminol (Al-OH) groups. Despite the closely matched adsorption energies of the two molecules, NH3 readily yields to replacement by H2O, challenging the notion that ice nucleation on microcline proceeds via the creation of an ordered H2O layer atop pre-adsorbed NH3 molecules.

2.
J Phys Chem Lett ; 15(1): 15-22, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38156776

RESUMO

Microcline feldspar (KAlSi3O8) is a common mineral with important roles in Earth's ecological balance. It participates in carbon, potassium, and water cycles, contributing to CO2 sequestration, soil formation, and atmospheric ice nucleation. To understand the fundamentals of these processes, it is essential to establish microcline's surface atomic structure and its interaction with the omnipresent water molecules. This work presents atomic-scale results on microcline's lowest-energy surface and its interaction with water, combining ultrahigh vacuum investigations by noncontact atomic force microscopy and X-ray photoelectron spectroscopy with density functional theory calculations. An ordered array of hydroxyls bonded to silicon or aluminum readily forms on the cleaved surface at room temperature. The distinct proton affinities of these hydroxyls influence the arrangement and orientation of the first water molecules binding to the surface, holding potential implications for the subsequent condensation of water.

3.
Nat Commun ; 14(1): 208, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639388

RESUMO

Muscovite mica, KAl2(Si3Al)O10(OH)2, is a common layered phyllosilicate with perfect cleavage planes. The atomically flat surfaces obtained through cleaving lend themselves to scanning probe techniques with atomic resolution and are ideal to model minerals and clays. Despite the importance of the cleaved mica surfaces, several questions remain unresolved. It is established that K+ ions decorate the cleaved surface, but their intrinsic ordering - unaffected by the interaction with the environment - is not known. This work presents clear images of the K+ distribution of cleaved mica obtained with low-temperature non-contact atomic force microscopy (AFM) under ultra-high vacuum (UHV) conditions. The data unveil the presence of short-range ordering, contrasting previous assumptions of random or fully ordered distributions. Density functional theory (DFT) calculations and Monte Carlo simulations show that the substitutional subsurface Al3+ ions have an important role for the surface K+ ion arrangement.

4.
ACS Nano ; 13(6): 7083-7090, 2019 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-31184857

RESUMO

Hexagonal boron nitride (h-BN) monolayers were grown on Pt(110) using borazine as a precursor molecule. The resulting surface structure was studied by scanning tunneling microscopy, low-energy electron diffraction, and density functional theory calculations. Borazine fragments reduce the roughening temperature of pristine Pt(110) ( Tr = 1090 K); consequently, growth below T = 1100 K results in a serrated h-BN/Pt(110) surface with small terraces, defects, and domain boundaries. Surprisingly, h-BN deposition at T > 1100 K yields large terraces covered by a carpet-like single-domain h-BN monolayer. Despite the incommensurability and different symmetry, the epitaxial growth is almost perfect. The key to this counterintuitive behavior is the "soft" Pt(110) surface responding to the h-BN overlayer in two ways: First, the (1 × 2)-missing-row (m.r.) reconstruction is converted into a (1 × n)-m.r. reconstruction with a regular alternation of n = 5 and 6, yielding a superperiodicity of the Moiré pattern. Second, the remaining rows experience significant relaxations. Some Pt surface atoms are mobile underneath the h-BN monolayer, even at room temperature. Under growth conditions, the top metal layer is disordered and highly mobile, rendering the h-BN growth comparable to that on liquid gold. Such a mechanism may be of general relevance for the epitaxial growth of 2D materials. Because epitaxial deposition of Pt(110) on various substrates has been demonstrated, the present system appears scalable, and its regular 1D grooves render it a promising template for nanowire arrays.

5.
J Mater Chem A Mater ; 6(14): 5703-5713, 2018 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-30009023

RESUMO

Activating the O2 molecule is at the heart of a variety of technological applications, most prominently in energy conversion schemes including solid oxide fuel cells, electrolysis, and catalysis. Perovskite oxides, both traditionally-used and novel formulations, are the prime candidates in established and emerging energy devices. This work shows that the as-cleaved and unmodified CaO-terminated (001) surface of Ca3Ru2O7, a Ruddlesden-Popper perovskite, supports a full monolayer of superoxide ions, O2-, when exposed to molecular O2. The electrons for activating the molecule are transferred from the subsurface RuO2 layer. Theoretical calculations using both, density functional theory (DFT) and more accurate methods (RPA), predict the adsorption of O2- with Eads = 0.72 eV and provide a thorough analysis of the charge transfer. Non-contact atomic force microscopy (nc-AFM) and scanning tunnelling microscopy (STM) are used to resolve single molecules and confirm the predicted adsorption structures. Local contact potential difference (LCPD) and X-ray photoelectron spectroscopy (XPS) measurements on the full monolayer of O2- confirm the negative charge state of the molecules. The present study reports the rare case of an oxide surface without dopants, defects, or low-coordinated sites readily activating molecular O2.

7.
Sci Rep ; 8(1): 2662, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29422517

RESUMO

Surface X-ray Diffraction was used to study the transformation of a carbon-supersaturated carbidic precursor toward a complete single layer of graphene in the temperature region below 703 K without carbon supply from the gas phase. The excess carbon beyond the 0.45 monolayers of C atoms within a single Ni2C layer is accompanied by sharpened reflections of the |4772| superstructure, along with ring-like diffraction features resulting from non-coincidence rotated Ni2C-type domains. A dynamic Ni2C reordering process, accompanied by slow carbon loss to subsurface regions, is proposed to increase the Ni2C 2D carbide long-range order via ripening toward coherent domains, and to increase the local supersaturation of near-surface dissolved carbon required for spontaneous graphene nucleation and growth. Upon transformation, the intensities of the surface carbide reflections and of specific powder-like diffraction rings vanish. The associated change of the specular X-ray reflectivity allows to quantify a single, fully surface-covering layer of graphene (2 ML C) without diffraction contributions of rotated domains. The simultaneous presence of top-fcc and bridge-top configurations of graphene explains the crystal truncation rod data of the graphene-covered surface. Structure determination of the |4772| precursor surface-carbide using density functional theory is in perfect agreement with the experimentally derived X-ray structure factors.

8.
Nat Commun ; 8(1): 23, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634335

RESUMO

As complex ternary perovskite-type oxides are increasingly used in solid oxide fuel cells, electrolysis and catalysis, it is desirable to obtain a better understanding of their surface chemical properties. Here we report a pronounced ordering of hydroxyls on the cleaved (001) surface of the Ruddlesden-Popper perovskite Ca3Ru2O7 upon water adsorption at 105 K and subsequent annealing to room temperature. Density functional theory calculations predict the dissociative adsorption of a single water molecule (E ads = 1.64 eV), forming an (OH)ads group adsorbed in a Ca-Ca bridge site, with an H transferred to a neighboring surface oxygen atom, Osurf. Scanning tunneling microscopy images show a pronounced ordering of the hydroxyls with (2 × 1), c(2 × 6), (1 × 3), and (1 × 1) periodicity. The present work demonstrates the importance of octahedral rotation and tilt in perovskites, for influencing surface reactivity, which here induces the ordering of the observed OH overlayers.As ternary perovskite-type oxides are increasingly used in fuel cells and catalysis, greater understanding of their surface chemical properties is required. Here the authors report a pronounced ordering of hydroxyls on the cleaved (001) surface of Ca3Ru2O7 perovskite induced by O-octahedral rotation and tilt.

9.
Phys Rev Lett ; 117(4): 046101, 2016 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-27494483

RESUMO

We report on the self-organized growth of monatomic transition-metal oxide chains of (3×1) periodicity and unusual MO_{2} stoichiometry (M=Ni, Co, Fe, Mn) on Ir(100). We analyze their structural and magnetic properties by means of quantitative LEED, STM, and density functional theory (DFT) calculations. LEED analyses reveal a fascinating common atomic structure in which the transition-metal atoms sit above a missing-row structure of the surface and are coupled to the substrate only via oxygen atoms. This structure is confirmed by DFT calculations with structural parameters deviating by less than 1.7 pm. The DFT calculations predict that the NiO_{2} chains are nonmagnetic, CoO_{2} chains are ferromagnetic, while FeO_{2} and MnO_{2} are antiferromagnetic. All structures show only weak magnetic interchain coupling. Further, we demonstrate the growth of oxide chains of binary alloys of Co and Ni or Fe on Ir(100), which allows us to produce well-controlled ensembles of ferromagnetic chains of different lengths separated by nonmagnetic or antiferromagnetic segments.

10.
J Phys Chem C Nanomater Interfaces ; 120(18): 9920-9932, 2016 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-27213024

RESUMO

Nucleation and growth of transition metals on zirconia has been studied by scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. Since STM requires electrical conductivity, ultrathin ZrO2 films grown by oxidation of Pt3Zr(0001) and Pd3Zr(0001) were used as model systems. DFT studies were performed for single metal adatoms on supported ZrO2 films as well as the (1̅11) surface of monoclinic ZrO2. STM shows decreasing cluster size, indicative of increasing metal-oxide interaction, in the sequence Ag < Pd ≈ Au < Ni ≈ Fe. Ag and Pd nucleate mostly at steps and domain boundaries of ZrO2/Pt3Zr(0001) and form three-dimensional clusters. Deposition of low coverages of Ni and Fe at room temperature leads to a high density of few-atom clusters on the oxide terraces. Weak bonding of Ag to the oxide is demonstrated by removing Ag clusters with the STM tip. DFT calculations for single adatoms show that the metal-oxide interaction strength increases in the sequence Ag < Au < Pd < Ni on monoclinic ZrO2, and Ag ≈ Au < Pd < Ni on the supported ultrathin ZrO2 film. With the exception of Au, metal nucleation and growth on ultrathin zirconia films follow the usual rules: More reactive (more electropositive) metals result in a higher cluster density and wet the surface more strongly than more noble metals. These bind mainly to the oxygen anions of the oxide. Au is an exception because it can bind strongly to the Zr cations. Au diffusion may be impeded by changing its charge state between -1 and +1. We discuss differences between the supported ultrathin zirconia films and the surfaces of bulk ZrO2, such as the possibility of charge transfer to the substrate of the films. Due to their large in-plane lattice constant and the variety of adsorption sites, ZrO2{111} surfaces are more reactive than many other oxygen-terminated oxide surfaces.

11.
Nat Mater ; 15(4): 450-455, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26689138

RESUMO

Although perovskite oxides hold promise in applications ranging from solid oxide fuel cells to catalysts, their surface chemistry is poorly understood at the molecular level. Here we follow the formation of the first monolayer of water at the (001) surfaces of Sr(n+1)Ru(n)O3(n+1) (n = 1, 2) using low-temperature scanning tunnelling microscopy, X-ray photoelectron spectroscopy, and density functional theory. These layered perovskites cleave between neighbouring SrO planes, yielding almost ideal, rocksalt-like surfaces. An adsorbed monomer dissociates and forms a pair of hydroxide ions. The OH stemming from the original molecule stays trapped at Sr-Sr bridge positions, circling the surface OH with a measured activation energy of 187 ± 10 meV. At higher coverage, dimers of dissociated water assemble into one-dimensional chains and form a percolating network where water adsorbs molecularly in the gaps. Our work shows the limitations of applying surface chemistry concepts derived for binary rocksalt oxides to perovskites.

12.
J Phys Chem C Nanomater Interfaces ; 119(5): 2462-2470, 2015 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-25688293

RESUMO

Ultrathin (∼3 Å) zirconium oxide films were grown on a single-crystalline Pt3Zr(0001) substrate by oxidation in 1 × 10-7 mbar of O2 at 673 K, followed by annealing at temperatures up to 1023 K. The ZrO2 films are intended to serve as model supports for reforming catalysts and fuel cell anodes. The atomic and electronic structure and composition of the ZrO2 films were determined by synchrotron-based high-resolution X-ray photoelectron spectroscopy (HR-XPS) (including depth profiling), low-energy electron diffraction (LEED), scanning tunneling microscopy (STM), and density functional theory (DFT) calculations. Oxidation mainly leads to ultrathin trilayer (O-Zr-O) films on the alloy; only a small area fraction (10-15%) is covered by ZrO2 clusters (thickness ∼0.5-10 nm). The amount of clusters decreases with increasing annealing temperature. Temperature-programmed desorption (TPD) of CO was utilized to confirm complete coverage of the Pt3Zr substrate by ZrO2, that is, formation of a closed oxide overlayer. Experiments and DFT calculations show that the core level shifts of Zr in the trilayer ZrO2 films are between those of metallic Zr and thick (bulklike) ZrO2. Therefore, the assignment of such XPS core level shifts to substoichiometric ZrO x is not necessarily correct, because these XPS signals may equally well arise from ultrathin ZrO2 films or metal/ZrO2 interfaces. Furthermore, our results indicate that the common approach of calculating core level shifts by DFT including final-state effects should be taken with care for thicker insulating films, clusters, and bulk insulators.

13.
Phys Rev Lett ; 113(11): 116101, 2014 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-25259988

RESUMO

Adsorption of CO at the Sr(3)Ru(2)O(7)(001) surface was studied with low-temperature scanning tunneling microscopy (STM) and density functional theory. In situ cleaved single crystals terminate in an almost perfect SrO surface. At 78 K, CO first populates impurities and then adsorbs above the apical surface O with a binding energy E(ads)=-0.7 eV. Above 100 K, this physisorbed CO replaces the surface O, forming a bent CO(2) with the C end bound to the Ru underneath. The resulting metal carboxylate (Ru-COO) can be desorbed by STM manipulation. A low activation (0.2 eV) and high binding (-2.2 eV) energy confirm a strong reaction between CO and regular surface sites of Sr(3)Ru(2)O(7); likely, this reaction causes the "UHV aging effect" reported for this and other perovskite oxides.

14.
Phys Rev Lett ; 108(6): 066101, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22401090

RESUMO

The support of epitaxial films frequently determines their crystallographic orientation, which is of crucial importance for their properties. We report a novel way to alter the film orientation without changing the substrate. We show for the growth of CoO on the Ir(100) surface that, while the oxide grows in (111) orientation on the bare substrate, the orientation switches to (100) by introducing a single (or a few) monolayer(s) of Co between the oxide and substrate. This tunability of the orientation of epitaxial films by the appropriate choice of interface chemistry most likely is a general feature.

15.
ACS Nano ; 6(4): 3564-72, 2012 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-22414295

RESUMO

Graphene has a close lattice match to the Ni(111) surface, resulting in a preference for 1 × 1 configurations. We have investigated graphene grown by chemical vapor deposition (CVD) on the nickel carbide (Ni(2)C) reconstruction of Ni(111) with scanning tunneling microscopy (STM). The presence of excess carbon, in the form of Ni(2)C, prevents graphene from adopting the preferred 1 × 1 configuration and leads to grain rotation. STM measurements show that residual Ni(2)C domains are present under rotated graphene. Nickel vacancy islands are observed at the periphery of rotated grains and indicate Ni(2)C dissolution after graphene growth. Density functional theory (DFT) calculations predict a very weak (van der Waals type) interaction of graphene with the underlying Ni(2)C, which should facilitate a phase separation of the carbide into metal-supported graphene. These results demonstrate that surface phases such as Ni(2)C can play a major role in the quality of epitaxial graphene.

17.
J Chem Phys ; 132(2): 024711, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20095698

RESUMO

The catalytic activity of palladium toward selective hydrogenation of hydrocarbons depends on the partial pressure of hydrogen. It has been suggested that the reaction proceeds selectively toward partial hydrogenation only when a carbon-rich film is present at the metal surface. On the basis of first-principles simulations, we show that carbon can dissolve into the metal because graphite formation is delayed by the large critical nucleus necessary for graphite nucleation. A bulk carbide Pd(6)C with a hexagonal six-layer fcc-like supercell forms. The structure is characterized by core level shifts of 0.66-0.70 eV in the core states of Pd, in agreement with experimental x-ray photoemission spectra. Moreover, this phase traps bulk-dissolved hydrogen, suppressing the total hydrogenation reaction channel and fostering partial hydrogenation.

18.
J Phys Condens Matter ; 22(39): 393001, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-21403213

RESUMO

The oxidation of rhodium particles leads to the formation of low-dimensional nanostructures, namely ultrathin oxide films and stripes adsorbed on the metallic surface. These structures display unique electronic and structural properties, which have been studied in detail experimentally and theoretically in recent years. In this review, the state of research on low-dimensional surface oxides formed on Rh surfaces will be discussed with a special focus on the contributions derived from computational approaches. Several points elucidating the novel properties of the surface oxides will be addressed: (i) the structural relation between the surface oxides and their bulk counterparts, (ii) the electronic properties of the low-dimensional oxide films and (iii) potential catalytic and electronic applications of the surface oxides.

19.
J Chem Phys ; 131(5): 054701, 2009 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-19673579

RESUMO

The catalytic oxidation activity of palladium is influenced by the oxidation state of the metal. Under technologically relevant conditions, bulk and surface oxides may form and decompose. By employing first-principles calculations based on density functional theory, we have investigated the transition from the surface oxide to the bulk oxide on Pd(100). We show that the most stable orientation of the oxide film is PdO(101)@Pd(100) at any film thickness. The monolayer has unique electronic, chemical, and thermodynamic properties in comparison to thicker oxide films. In particular, carbon monoxide adsorbs by approximately 0.3 eV more strongly on thicker oxides than on the surface oxide, a fact that should influence the catalytical activity. Finally, we show that a simple model employing density functional theory energies predicts a Stranski-Krastanov growth mode for the oxide film, with a critical thickness of 1 ML. Our results give a framework for the interpretation of experiments of Pd oxide growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...