Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 26(3): 2304-2311, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38165713

RESUMO

The electronic structure of the fumarate, maleate, and succinate dianions in the context of their stability is determined in a joint experimental and computational study with X-ray absorption spectroscopy and resonant inelastic X-ray scattering at the O K-edge. The study reveals differences in the electronic states and molecular orbitals of the three molecules. In particular, maleate has a non-degenerate oxygen core-orbital with an energy difference of approximately 0.15 eV, visible in a two peak structure in XAS. Polarization-dependent RIXS provides information on the orientation of the occupied valence molecular orbitals with respect to the carboxylate group plane and shows a gradually increasing energy gap between the HOMO and excited π* LUMO from fumarate to maleate to succinate. We also demonstrate the energy excitation dependence of the RIXS spectra of maleate, with the total inelastic RIXS profile shifting towards higher energy loss as the detuning is increased from negative to positive values. Our findings show that maleate is less stable than fumarate and succinate due to the presence of electronic density on its HOMO orbital on the CC bond between carboxylate groups, which can lead to weaker bonding of maleate with molecules or ions.

2.
Inorg Chem ; 61(27): 10321-10328, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35764301

RESUMO

Chelating agents are an integral part of transition metal complex chemistry with broad biological and industrial relevance. The hexadentate chelating agent ethylenediaminetetraacetic acid (EDTA) has the capability to bind to metal ions at its two nitrogen and four of its carboxylate oxygen sites. We use resonant inelastic X-ray scattering at the 1s absorption edge of the aforementioned elements in EDTA and the iron(III)-EDTA complex to investigate the impact of the metal-ligand bond formation on the electronic structure of EDTA. Frontier orbital distortions, occupation changes, and energy shifts through metal-ligand bond formation are probed through distinct spectroscopic signatures.


Assuntos
Complexos de Coordenação , Elementos de Transição , Ácido Edético , Compostos Férricos/química , Ligantes , Metais
3.
Angew Chem Int Ed Engl ; 61(27): e202200709, 2022 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-35325500

RESUMO

Photoacids show a strong increase in acidity in the first electronic excited state, enabling real-time studies of proton transfer in acid-base reactions, proton transport in energy storage devices and biomolecular sensor protein systems. Several explanations have been proposed for what determines photoacidity, ranging from variations in solvation free energy to changes in electronic structure occurring along the four stages of the Förster cycle. Here we use picosecond nitrogen K-edge spectroscopy to monitor the electronic structure changes of the proton donating group in a protonated aromatic amine photoacid in solution upon photoexcitation and subsequent proton transfer dynamics. Probing core-to-valence transitions locally at the amine functional group and with orbital specificity, we clearly reveal pronounced electronic structure, dipole moment and energetic changes on the conjugate photobase side. This result paves the way for a detailed electronic structural characterization of the photoacidity phenomenon.


Assuntos
Aminas , Prótons , Ácidos/química , Eletrônica , Análise Espectral
4.
J Phys Chem B ; 124(27): 5636-5645, 2020 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-32532156

RESUMO

In order to tailor solution-phase chemical reactions involving transition metal complexes, it is critical to understand how their valence electronic charge distributions are affected by the solution environment. Here, solute-solvent interactions of a solvatochromic mixed-ligand iron complex were investigated using X-ray absorption spectroscopy at the transition metal L2,3-edge. Due to the selectivity of the corresponding core excitations to the iron 3d orbitals, the method grants direct access to the valence electronic structure around the iron center and its response to interactions with the solvent environment. A linear increase of the total L2,3-edge absorption cross section as a function of the solvent Lewis acidity is revealed. The effect is caused by relative changes in different metal-ligand-bonding channels, which preserve local charge densities while increasing the density of unoccupied states around the iron center. These conclusions are corroborated by a combination of molecular dynamics and spectrum simulations based on time-dependent density functional theory. The simulations reproduce the spectral trends observed in the X-ray but also optical absorption experiments. Our results underscore the importance of solute-solvent interactions when aiming for an accurate description of the valence electronic structure of solvated transition metal complexes and demonstrate how L2,3-edge absorption spectroscopy can aid in understanding the impact of the solution environment on intramolecular covalency and the electronic charge distribution.

5.
Angew Chem Int Ed Engl ; 58(31): 10742-10746, 2019 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-31145507

RESUMO

Covalency is found to even out charge separation after photo-oxidation of the metal center in the metal-to-ligand charge-transfer state of an iron photosensitizer. The σ-donation ability of the ligands compensates for the loss of iron 3d electronic charge, thereby upholding the initial metal charge density and preserving the local noble-gas configuration. These findings are enabled through element-specific and orbital-selective time-resolved X-ray absorption spectroscopy at the iron L-edge. Thus, valence orbital populations around the central metal are directly accessible. In conjunction with density functional theory we conclude that the picture of a localized charge-separation is inadequate. However, the unpaired spin density provides a suitable representation of the electron-hole pair associated with the electron-transfer process.

6.
Phys Rev Lett ; 122(15): 157202, 2019 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-31050542

RESUMO

One of the key processes setting the speed of the ultrafast magnetization phenomena is the angular momentum transfer from and into the spin system. However, the way the angular momentum flows during ultrafast demagnetization and magnetization switching phenomena remains elusive so far. We report on time-resolved soft x-ray magnetic circular dichroism measurements of the ferrimagnetic GdFeCo alloy allowing us to record the dynamics of elemental spin and orbital moments at the Fe and Gd sites during femtosecond laser-induced demagnetization. We observe a complete transfer of spin and orbital angular momentum to the lattice during the first hundreds of femtoseconds of the demagnetization process.

7.
Chemistry ; 25(7): 1733-1739, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30452789

RESUMO

Excited-state proton transfer (ESPT) is a fundamental process in biomolecular photochemistry, but its underlying mediators often evade direct observation. We identify a distinct pathway for ESPT in aqueous 2-thiopyridone, by employing transient N 1s X-ray absorption spectroscopy and multi-configurational spectrum simulations. Photoexcitations to the singlet S2 and S4 states both relax promptly through intersystem crossing to the triplet T1 state. The T1 state, through its rapid population and near nanosecond lifetime, mediates nitrogen site deprotonation by ESPT in a secondary intersystem crossing to the S0 potential energy surface. This conclusively establishes a dominant ESPT pathway for the system in aqueous solution, which is also compatible with previous measurements in acetonitrile. Thereby, the hitherto open questions of the pathway for ESPT in the compound, including its possible dependence on excitation wavelength and choice of solvent, are resolved.

8.
Chem Sci ; 9(33): 6813-6829, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30310614

RESUMO

Transition metals in inorganic systems and metalloproteins can occur in different oxidation states, which makes them ideal redox-active catalysts. To gain a mechanistic understanding of the catalytic reactions, knowledge of the oxidation state of the active metals, ideally in operando, is therefore critical. L-edge X-ray absorption spectroscopy (XAS) is a powerful technique that is frequently used to infer the oxidation state via a distinct blue shift of L-edge absorption energies with increasing oxidation state. A unified description accounting for quantum-chemical notions whereupon oxidation does not occur locally on the metal but on the whole molecule and the basic understanding that L-edge XAS probes the electronic structure locally at the metal has been missing to date. Here we quantify how charge and spin densities change at the metal and throughout the molecule for both redox and core-excitation processes. We explain the origin of the L-edge XAS shift between the high-spin complexes MnII(acac)2 and MnIII(acac)3 as representative model systems and use ab initio theory to uncouple effects of oxidation-state changes from geometric effects. The shift reflects an increased electron affinity of MnIII in the core-excited states compared to the ground state due to a contraction of the Mn 3d shell upon core-excitation with accompanied changes in the classical Coulomb interactions. This new picture quantifies how the metal-centered core hole probes changes in formal oxidation state and encloses and substantiates earlier explanations. The approach is broadly applicable to mechanistic studies of redox-catalytic reactions in molecular systems where charge and spin localization/delocalization determine reaction pathways.

9.
Phys Chem Chem Phys ; 20(24): 16817-16827, 2018 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-29888772

RESUMO

X-ray induced sample damage can impede electronic and structural investigations of radiation-sensitive samples studied with X-rays. Here we quantify dose-dependent sample damage to the prototypical MnIII(acac)3 complex in solution and at room temperature for the soft X-ray range, using X-ray absorption spectroscopy at the Mn L-edge. We observe the appearance of a reduced MnII species as the X-ray dose is increased. We find a half-damage dose of 1.6 MGy and quantify a spectroscopically tolerable dose on the order of 0.3 MGy (1 Gy = 1 J kg-1), where 90% of MnIII(acac)3 are intact. Our dose-limit is around one order of magnitude lower than the Henderson limit (half-damage dose of 20 MGy) which is commonly employed for protein crystallography with hard X-rays. It is comparable, however, to the dose-limits obtained for collecting un-damaged Mn K-edge spectra of the photosystem II protein, using hard X-rays. The dose-dependent reduction of MnIII observed here for solution samples occurs at a dose limit that is two to four orders of magnitude smaller than the dose limits previously reported for soft X-ray spectroscopy of iron samples in the solid phase. We compare our measured to calculated spectra from ab initio restricted active space (RAS) theory and discuss possible mechanisms for the observed dose-dependent damage of MnIII(acac)3 in solution. On the basis of our results, we assess the influence of sample damage in other experimental studies with soft X-rays from storage-ring synchrotron radiation sources and X-ray free-electron lasers.

10.
Phys Rev Lett ; 119(19): 197202, 2017 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-29219516

RESUMO

By comparing femtosecond laser pulse induced ferro- and antiferromagnetic dynamics in one and the same material-metallic dysprosium-we show both to behave fundamentally different. Antiferromagnetic order is considerably faster and much more efficiently reduced by optical excitation than its ferromagnetic counterpart. We assign the fast and extremely efficient process in the antiferromagnet to an interatomic transfer of angular momentum within the spin system. Our findings imply that this angular momentum transfer channel is effective in other magnetic metals with nonparallel spin alignment. They also point out a possible route towards energy-efficient spin manipulation for magnetic devices.

11.
Struct Dyn ; 4(5): 054307, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28944255

RESUMO

X-ray absorption spectroscopy at the L-edge of 3d transition metals provides unique information on the local metal charge and spin states by directly probing 3d-derived molecular orbitals through 2p-3d transitions. However, this soft x-ray technique has been rarely used at synchrotron facilities for mechanistic studies of metalloenzymes due to the difficulties of x-ray-induced sample damage and strong background signals from light elements that can dominate the low metal signal. Here, we combine femtosecond soft x-ray pulses from a free-electron laser with a novel x-ray fluorescence-yield spectrometer to overcome these difficulties. We present L-edge absorption spectra of inorganic high-valent Mn complexes (Mn ∼ 6-15 mmol/l) with no visible effects of radiation damage. We also present the first L-edge absorption spectra of the oxygen evolving complex (Mn4CaO5) in Photosystem II (Mn < 1 mmol/l) at room temperature, measured under similar conditions. Our approach opens new ways to study metalloenzymes under functional conditions.

12.
Struct Dyn ; 4(5): 054902, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28852689

RESUMO

We present a setup combining a liquid flatjet sample delivery and a MHz laser system for time-resolved soft X-ray absorption measurements of liquid samples at the high brilliance undulator beamline UE52-SGM at Bessy II yielding unprecedented statistics in this spectral range. We demonstrate that the efficient detection of transient absorption changes in transmission mode enables the identification of photoexcited species in dilute samples. With iron(II)-trisbipyridine in aqueous solution as a benchmark system, we present absorption measurements at various edges in the soft X-ray regime. In combination with the wavelength tunability of the laser system, the set-up opens up opportunities to study the photochemistry of many systems at low concentrations, relevant to materials sciences, chemistry, and biology.

13.
Opt Express ; 24(20): 22469-22480, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27828320

RESUMO

X-ray free electron lasers (XFELs) enable unprecedented new ways to study the electronic structure and dynamics of transition metal systems. L-edge absorption spectroscopy is a powerful technique for such studies and the feasibility of this method at XFELs for solutions and solids has been demonstrated. However, the required x-ray bandwidth is an order of magnitude narrower than that of self-amplified spontaneous emission (SASE), and additional monochromatization is needed. Here we compare L-edge x-ray absorption spectroscopy (XAS) of a prototypical transition metal system based on monochromatizing the SASE radiation of the linac coherent light source (LCLS) with a new technique based on self-seeding of LCLS. We demonstrate how L-edge XAS can be performed using the self-seeding scheme without the need of an additional beam line monochromator. We show how the spectral shape and pulse energy depend on the undulator setup and how this affects the x-ray spectroscopy measurements.

14.
Struct Dyn ; 3(5): 054304, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27795974

RESUMO

We present an X-ray-optical cross-correlator for the soft ([Formula: see text]) up to the hard X-ray regime based on a molybdenum-silicon superlattice. The cross-correlation is done by probing intensity and position changes of superlattice Bragg peaks caused by photoexcitation of coherent phonons. This approach is applicable for a wide range of X-ray photon energies as well as for a broad range of excitation wavelengths and requires no external fields or changes of temperature. Moreover, the cross-correlator can be employed on a 10 ps or 100 fs time scale featuring up to 50% total X-ray reflectivity and transient signal changes of more than 20%.

15.
Phys Rev Lett ; 117(15): 153401, 2016 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-27768378

RESUMO

We studied the nanoplasma formation and explosion dynamics of single large xenon clusters in ultrashort, intense x-ray free-electron laser pulses via ion spectroscopy. The simultaneous measurement of single-shot diffraction images enabled a single-cluster analysis that is free from any averaging over the cluster size and laser intensity distributions. The measured charge state-resolved ion energy spectra show narrow distributions with peak positions that scale linearly with final ion charge state. These two distinct signatures are attributed to highly efficient recombination that eventually leads to the dominant formation of neutral atoms in the cluster. The measured mean ion energies exceed the value expected without recombination by more than an order of magnitude, indicating that the energy release resulting from electron-ion recombination constitutes a previously unnoticed nanoplasma heating process. This conclusion is supported by results from semiclassical molecular dynamics simulations.

16.
J Synchrotron Radiat ; 23(Pt 3): 700-11, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27140149

RESUMO

The slicing facility FemtoSpeX at BESSY II offers unique opportunities to study photo-induced dynamics on femtosecond time scales by means of X-ray magnetic circular dichroism, resonant and non-resonant X-ray diffraction, and X-ray absorption spectroscopy experiments in the soft X-ray regime. Besides femtosecond X-ray pulses, slicing sources inherently also produce a so-called `halo' background with a different time structure, polarization and pointing. Here a detailed experimental characterization of the halo radiation is presented, and a method is demonstrated for its correct and unambiguous removal from femtosecond time-resolved data using a special laser triggering scheme as well as analytical models. Examples are given for time-resolved measurements with corresponding halo correction, and errors of the relevant physical quantities caused by either neglecting or by applying a simplified model to describe this background are estimated.

17.
Faraday Discuss ; 168: 553-69, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25302398

RESUMO

Intermolecular reactions in and on icy films on silicate and carbonaceous grains constitute a major route for the formation of new molecular constituents in interstellar molecular clouds. In more diffuse regions and in protoplanetary discs, energetic radiation can trigger reaction routes far from thermal equilibrium. As an analog of interstellar ice-covered dust grains, highly-oriented pyrolytic graphite (HOPG) covered with D2O, NO, and H atoms is irradiated by ultrashort XUV pulses and the desorbing ionic and neutral products are analysed. The yields of several products show a nonlinear intensity dependence and thus enable the elucidation of reaction dynamics by two-pulse correlated desorption.

18.
J Synchrotron Radiat ; 21(Pt 5): 1090-104, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25177998

RESUMO

Here the major upgrades of the femtoslicing facility at BESSY II (Khan et al., 2006) are reviewed, giving a tutorial on how elliptical-polarized ultrashort soft X-ray pulses from electron storage rings are generated at high repetition rates. Employing a 6 kHz femtosecond-laser system consisting of two amplifiers that are seeded by one Ti:Sa oscillator, the total average flux of photons of 100 fs duration (FWHM) has been increased by a factor of 120 to up to 10(6) photons s(-1) (0.1% bandwidth)(-1) on the sample in the range from 250 to 1400 eV. Thanks to a new beamline design, a factor of 20 enhanced flux and improvements of the stability together with the top-up mode of the accelerator have been achieved. The previously unavoidable problem of increased picosecond-background at higher repetition rates, caused by `halo' photons, has also been solved by hopping between different `camshaft' bunches in a dedicated fill pattern (`3+1 camshaft fill') of the storage ring. In addition to an increased X-ray performance at variable (linear and elliptical) polarization, the sample excitation in pump-probe experiments has been considerably extended using an optical parametric amplifier that supports the range from the near-UV to the far-IR regime. Dedicated endstations covering ultrafast magnetism experiments based on time-resolved X-ray circular dichroism have been either upgraded or, in the case of time-resolved resonant soft X-ray diffraction and reflection, newly constructed and adapted to femtoslicing requirements. Experiments at low temperatures down to 6 K and magnetic fields up to 0.5 T are supported. The FemtoSpeX facility is now operated as a 24 h user facility enabling a new class of experiments in ultrafast magnetism and in the field of transient phenomena and phase transitions in solids.

19.
Opt Express ; 22(10): 12583-602, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24921376

RESUMO

In the present work, different varied line space (VLS) and reflection zone plate (RZP) gratings are analyzed for their suitability in low-signal femtosecond soft X-ray spectroscopy. The need for high efficiency suggests a straightened focal line whose sharpness and residual curvature will determine the quality. One- and two-dimensional VLS structures feature an attractive trade-off between a sufficient optical performance and a strongly relaxed fabrication, due to moderate line densities which are easily accessible by e-beam lithography. Based on fanned-out RZP arrays, their continuous limit version is identified to generate an almost perfect focal line however, with an aberration level three orders of magnitude better than for the VLS gratings and well below the diffraction limit over large acceptance angles.

20.
Philos Trans R Soc Lond B Biol Sci ; 369(1647): 20130590, 2014 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-24914169

RESUMO

X-ray free-electron lasers (XFELs) open up new possibilities for X-ray crystallographic and spectroscopic studies of radiation-sensitive biological samples under close to physiological conditions. To facilitate these new X-ray sources, tailored experimental methods and data-processing protocols have to be developed. The highly radiation-sensitive photosystem II (PSII) protein complex is a prime target for XFEL experiments aiming to study the mechanism of light-induced water oxidation taking place at a Mn cluster in this complex. We developed a set of tools for the study of PSII at XFELs, including a new liquid jet based on electrofocusing, an energy dispersive von Hamos X-ray emission spectrometer for the hard X-ray range and a high-throughput soft X-ray spectrometer based on a reflection zone plate. While our immediate focus is on PSII, the methods we describe here are applicable to a wide range of metalloenzymes. These experimental developments were complemented by a new software suite, cctbx.xfel. This software suite allows for near-real-time monitoring of the experimental parameters and detector signals and the detailed analysis of the diffraction and spectroscopy data collected by us at the Linac Coherent Light Source, taking into account the specific characteristics of data measured at an XFEL.


Assuntos
Elétrons , Lasers , Complexo de Proteína do Fotossistema II/química , Software , Espectrometria por Raios X/métodos , Difração de Raios X/métodos , Compostos de Manganês/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...