Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
PeerJ ; 11: e15724, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37583911

RESUMO

Background: Olive (Olea europaea L.) oil accumulate more diacylglycerols (DAG) than mostly vegetable oils. Unsaturated fatty acids-enriched DAG consumption enhanced wellness in subjects. However, the mechanism of DAG accumulation is not yet fully understood. Methods: In this study, gene network of DAG accumulation and fatty acid composition in the two olive mesocarps ("Chenggu 32" (CG) and "Koroneiki" (QJ)) were investigated by integrating lipidome and transcriptome techniques. Results: A total of 1,408 lipid molecules were identified by lipidomic analysis in olive mesocarp, of which DAG (DAG36:3, DAG36:4 and DAG36:5) showed higher content, and triacylglycerols (TAG54:3, TAG54:4) exhibited opposite trend in CG. Specifically, DAG was rich in polyunsaturated fatty acids (especially C18:2) at the sn-2 position, which was inconsistent with TAG at the same positions (Primarily C18:1). Transcriptomic analysis revealed that phospholipase C (NPC, EC 3.1.4.3) were up-regulated relative to QJ, whereas diacylglycerol kinase (ATP) (DGK, EC 2.7.1.107), diacylglycerol acyltransferase (DGAT, EC 2.3.1.20), and phospholipid: diacylglycerol acyltransferase (PDAT, EC 2.3.1.158) were down-regulated. Conclusion: We speculated that the non-acyl coenzyme A pathway played a significant role in DAG biosynthesis. Additionally, fatty acyl-ACP thioesterase B (FATB, EC 3.1.2.14), stearoyl [acyl-carrier-protein] 9-desaturase (SAD, EC 1.14.19.2) and omega-6 fatty acid desaturase (FAD2, EC 1.14.19.6) were highly expressed in CG and may be involved in regulating fatty acid composition. Meanwhile, phospholipase A1 (LCAT, EC 3.1.1.32) involved in the acyl editing reaction facilitated PUFA linkage at the sn-2 position of DAG. Our findings provide novel insights to increase the DAG content, improve the fatty acid composition of olive oil, and identify candidate genes for the production of DAG-rich oils.


Assuntos
Olea , Humanos , Olea/genética , Lipidômica , Diacilglicerol O-Aciltransferase/genética , Diglicerídeos/metabolismo , Transcriptoma/genética , Ácidos Graxos , Ácidos Graxos Insaturados
2.
J Plant Physiol ; 288: 154072, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37634413

RESUMO

In this work, integrated transcriptome and proteome to offer a new insight of the molecular mechanisms linked to the nutritional quality of Koroneiki and Chenggu-32 by RNA sequencing and 4D Label-free quantitative proteomics technology. Physical and chemical properties studies showed that the main nutrient content of Koroneiki was significantly higher than Chenggu-32, proved the quality of Koroneiki was better. Compared to Koroneiki, there were differences in expression levels of 10,115 genes and 723 proteins in Chenggu-32, mainly related to enzymes in lipid metabolism and lipid biosynthesis. Through the joint analysis of transcriptome and proteome, it was found that the differentially expressed genes and differentially expressed proteins on the association were mainly enriched in starch and sucrose metabolism and α-linolenic acid metabolism pathways, indicated that the nutritional quality of olive fruits was related to the two metabolic pathways. The results of this study identified key genes and proteins related to nutrient metabolism and accumulation in olive fruits, provided transcriptomic and proteomic information for the molecular mechanism of nutritional changes in olive fruit, it helps to develop higher quality olive trees.


Assuntos
Olea , Proteoma , Transcriptoma , Olea/genética , Frutas/genética , Proteômica , Valor Nutritivo
3.
Appl Opt ; 60(35): 10766-10771, 2021 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-35200834

RESUMO

A prominent challenge in single-molecule localization microscopy is the real-time, fast, and accurate localization of nano-objects moving in three-dimensional (3D) samples. A well-established method for 3D single-molecule localization is the double-helix pointspread-function (DH-PSF) engineering, which uses additional optical elements to make the PSF exhibit different rotation angles with different nanoparticle depths. However, the compact main lobe size, effective detection depth, and precise conversion between rotation angle and depth are necessary, posing challenges to the DH-PSF generation method. Here we generate a more compact DH-PSF using Fresnel-zone-based spiral phases, and the pure phase mask achieves high transmission efficiency. The final generated DH-PSFs have a linear rotation rate at each axial position, showing a more accurate rotation angle and depth conversion. The Cramer-Rao lower limit calculation results show that the axial depth of DH-PSF extends to ∼11µm with an axial localization precision of ∼45nm at 3000 photons and average background noise of 15. We measured the diffusion coefficient of nanospheres in different concentrations of glycerol using the generated DH-PSF. The measured results are within 6% error from the theoretical values, indicating the superior performance of the DH-PSF for nanoparticle diffusion coefficient measurements.

4.
Asian Pac J Trop Med ; 9(6): 572-6, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27262069

RESUMO

OBJECTIVE: To explore the protection and molecular mechanism of histone deacetylase inhibitors (HDACIs) on the spleen of rats with hemorrhagic shock. METHODS: A total of 60 SPF male SD rats were selected for the modeling of severe hemorrhagic shock using the method of arterial and venous cannulation with the time-divided bleeding. The measurement of mean arterial blood pressure and blood lactic acid was used to verify the modeling. The modeled rats were randomly divided into shock group, shock + suberoylanilide hydroxamic acid (SAHA) group, shock + autogenous transfusion group and shock + SAHA + autogenous transfusion group. Three hours after the treatment, the spleen of rats was collected and TUNEL method was employed to detect the apoptosis of spleen cells in each group. The statistical analysis was performed. Afterwards, real-time PCR and western blot were employed to detect the expression of BCL-2, BAX and caspass3 in the spleen of rats in each group. RESULTS: A total of 53 rats had successful modeling of severe hemorrhagic shock, with success rate of 88%. Cell apoptosis in the severe hemorrhagic model group was the most serious. After the intervention of HDACIs and the autogenous transfusion, the tissue injury was a bit recovered. Cell apoptosis was least in the shock + SAHA + autogenous transfusion group (P < 0.05). After the intervention of HDACIs and the autogenous transfusion, the relative expression of BCL-2 was significantly increased (P < 0.05), with highest relative expression of BCL-2 in shock + SAHA + autogenous transfusion group (P < 0.05). After the intervention of HDACIs and the autogenous transfusion, the relative expression of BAX was significantly decreased (P < 0.05), with lowest relative expression of BAX in the intervention group of single HDACIs. The change in the expression of caspass3 was similar to BAX, namely the relative expression of caspass3 was significantly decreased after the intervention of HDACIs and the autogenous transfusion (P < 0.05). CONCLUSIONS: HDACIs and autogenous transfusion can all protect the spleen injury because of the severe hemorrhagic shock. Its molecular mechanism may be related to the regulation on the expression of BCL-2/BAX and caspass3, which may affect the apoptosis process of cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...