Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 91(1): 013109, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32012554

RESUMO

Time-resolved photoemission with ultrafast pump and probe pulses is an emerging technique with wide application potential. Real-time recording of nonequilibrium electronic processes, transient states in chemical reactions, or the interplay of electronic and structural dynamics offers fascinating opportunities for future research. Combining valence-band and core-level spectroscopy with photoelectron diffraction for electronic, chemical, and structural analyses requires few 10 fs soft X-ray pulses with some 10 meV spectral resolution, which are currently available at high repetition rate free-electron lasers. We have constructed and optimized a versatile setup commissioned at FLASH/PG2 that combines free-electron laser capabilities together with a multidimensional recording scheme for photoemission studies. We use a full-field imaging momentum microscope with time-of-flight energy recording as the detector for mapping of 3D band structures in (kx, ky, E) parameter space with unprecedented efficiency. Our instrument can image full surface Brillouin zones with up to 7 Å-1 diameter in a binding-energy range of several eV, resolving about 2.5 × 105 data voxels simultaneously. Using the ultrafast excited state dynamics in the van der Waals semiconductor WSe2 measured at photon energies of 36.5 eV and 109.5 eV, we demonstrate an experimental energy resolution of 130 meV, a momentum resolution of 0.06 Å-1, and a system response function of 150 fs.

2.
Nanoscale Adv ; 2(3): 1358-1364, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36133056

RESUMO

Using angle-resolved photoelectron spectroscopy, we compare the electronic band structure of an ultrathin (1.8 nm) δ-layer of boron-doped diamond with a bulk-like boron doped diamond film (3 µm). Surprisingly, the measurements indicate that except for a small change in the effective mass, there is no significant difference between the electronic structure of these samples, irrespective of their physical dimensionality, except for a small modification of the effective mass. While this suggests that, at the current time, it is not possible to fabricate boron-doped diamond structures with quantum properties, it also means that nanoscale boron doped diamond structures can be fabricated which retain the classical electronic properties of bulk-doped diamond, without a need to consider the influence of quantum confinement.

3.
Phys Rev Lett ; 120(4): 046403, 2018 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-29437461

RESUMO

We demonstrate simultaneous quantization of conduction band (CB) and valence band (VB) states in silicon using ultrashallow, high-density, phosphorus doping profiles (so-called Si:P δ layers). We show that, in addition to the well-known quantization of CB states within the dopant plane, the confinement of VB-derived states between the subsurface P dopant layer and the Si surface gives rise to a simultaneous quantization of VB states in this narrow region. We also show that the VB quantization can be explained using a simple particle-in-a-box model, and that the number and energy separation of the quantized VB states depend on the depth of the P dopant layer beneath the Si surface. Since the quantized CB states do not show a strong dependence on the dopant depth (but rather on the dopant density), it is straightforward to exhibit control over the properties of the quantized CB and VB states independently of each other by choosing the dopant density and depth accordingly, thus offering new possibilities for engineering quantum matter.

4.
J Phys Condens Matter ; 27(5): 054001, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25414050

RESUMO

Density functional theory is used to describe the reactions of chemisorption of pyridine on the silicon (0 0 1) surface. Adsorption energies of six relevant structures, and the activation energies between them are reported. We consider in detail the dative to tight-bridge transition for which conflicting results have been reported in the literature, and provide a description of the formation of inter-row chains observed in high-coverage experiments. We demonstrate that the choice of DFT functional has a considerable effect on the relative energetics and of the four DFT functionals considered, we find that the range-separated hybrid ωB97X-D functional with empirical dispersion provides the most consistent description of the experiment data.

5.
Langmuir ; 28(40): 14291-300, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22970746

RESUMO

Upon adsorption on the (111) facet of Ag, 4-[trans-2-(pyrid-4-yl-vinyl)] benzoic acid (PVBA) self-assembles into a highly ordered, chiral twin chain structure at submonolayer coverages with domains that can extend for micrometers in one dimension. Using polarization-dependent measurements of C and N K-shell excitations in near-edge X-ray absorption fine structure (NEXAFS) spectra, we determine the binding geometry of single PVBA molecules within this unique ensemble for both low and high coverage regimes. At submonolayer coverage, the molecule is twisted to facilitate the formation of hydrogen bonds. The gas-phase planarity is gradually recovered as the coverage is increased, with complete planarity coinciding with loss of order in the overlayer. Thermal treatment of the PVBA film results in deprotonation of the carboxyl tail of the molecule, but despite the suppression of the stabilizing hydrogen-bonds, the overlayer remains ordered.

6.
Nano Lett ; 11(6): 2272-9, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21553900

RESUMO

Despite the rapidly growing interest in Ge for ultrascaled classical transistors and innovative quantum devices, the field of Ge nanoelectronics is still in its infancy. One major hurdle has been electron confinement since fast dopant diffusion occurs when traditional Si CMOS fabrication processes are applied to Ge. We demonstrate a complete fabrication route for atomic-scale, donor-based devices in single-crystal Ge using a combination of scanning tunneling microscope lithography and high-quality crystal growth. The cornerstone of this fabrication process is an innovative lithographic procedure based on direct laser patterning of the semiconductor surface, allowing the gap between atomic-scale STM-patterned structures and the outside world to be bridged. Using this fabrication process, we show electron confinement in a 5 nm wide phosphorus-doped nanowire in single-crystal Ge. At cryogenic temperatures, Ohmic behavior is observed and a low planar resistivity of 8.3 kΩ/□ is measured.


Assuntos
Germânio/química , Nanoestruturas/química , Microscopia de Tunelamento , Tamanho da Partícula , Teoria Quântica , Propriedades de Superfície , Transistores Eletrônicos
7.
Proc Natl Acad Sci U S A ; 107(25): 11200-4, 2010 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-20534511

RESUMO

One of the great challenges in surface chemistry is to assemble aromatic building blocks into ordered structures that are mechanically robust and electronically interlinked--i.e., are held together by covalent bonds. We demonstrate the surface-confined growth of ordered arrays of poly(3,4-ethylenedioxythiophene) (PEDOT) chains, by using the substrate (the 110 facet of copper) simultaneously as template and catalyst for polymerization. Copper acts as promoter for the Ullmann coupling reaction, whereas the inherent anisotropy of the fcc 110 facet confines growth to a single dimension. High resolution scanning tunneling microscopy performed under ultrahigh vacuum conditions allows us to simultaneously image PEDOT oligomers and the copper lattice with atomic resolution. Density functional theory calculations confirm an unexpected adsorption geometry of the PEDOT oligomers, which stand on the sulfur atom of the thiophene ring rather than lying flat. This polymerization approach can be extended to many other halogen-terminated molecules to produce epitaxially aligned conjugated polymers. Such systems might be of central importance to develop future electronic and optoelectronic devices with high quality active materials, besides representing model systems for basic science investigations.


Assuntos
Química/métodos , Polímeros/química , Tiofenos/química , Anisotropia , Catálise , Cobre/química , Dimerização , Íons , Teste de Materiais , Microscopia/métodos , Microscopia de Tunelamento/métodos , Modelos Químicos , Software , Propriedades de Superfície , Temperatura
8.
Nanotechnology ; 19(42): 424021, 2008 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-21832681

RESUMO

We performed an ultra-high vacuum scanning tunneling microscopy (STM) investigation of the self-assembly of rubrene at room temperature on Cu(111), a metal surface with threefold symmetry. Rubrene self-assembles into two different structures called row and trimer. Both are different than the structures already observed on Cu(110) and Cu(100). Row and trimer structures have comparable molecular packing densities and are equally distributed across the surface. In the row structure the molecules are oriented with their backbone along the same high symmetry directions of the surface: [[Formula: see text]], [[Formula: see text]] or [[Formula: see text]]. The trimer structure is composed of units of three rubrene molecules, oriented along the high symmetry surface directions. These units are chiral, as revealed by height profile measurements by STM, and self-assemble in domains containing only one type of enantiomer.

9.
Ultramicroscopy ; 98(1): 43-9, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14609641

RESUMO

It is known that the vibrational spectra of beetle-type scanning tunneling microscopes with a total mass of approximately 3-4 g contain extrinsic 'rattling' modes in the frequency range extending from 500 to 1700 Hz that interfere with image acquisition. These modes lie below the lowest calculated eigenfrequency of the beetle and it has been suggested that they arise from the inertial sliding of the beetle between surface asperities on the raceway. In this paper we describe some cross-coupling measurements that were performed on three home-built beetle-type STMs of two different designs. We provide evidence that suggests that for beetles with total masses of 12-15 g all the modes in the rattling range are intrinsic. This provides additional support for the notion that the vibrational properties of beetle-type scanning tunneling microscopes can be improved by increasing the contact pressure between the feet of the beetle and the raceway.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...