Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 35(45)2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37536324

RESUMO

Formation and electronic states of graphene nanoribbons with arm-chair edges (AGNR) are studied on the SiC(0001) vicinal surfaces toward the [11-00] direction. The surface step and terrace structures of both 4H and 6H-SiC substrates are used as the growth templates of one-dimensional arrays of AGNRs, which are prepared using the carbon molecular beam epitaxy followed by hydrogen intercalation. A band gap is observed above theπ-band maximum by angle-resolved photoelectron spectroscopy (ARPES) for the both samples. The average widths of the AGNRs are 6 and 10 nm, and the estimated average band gaps are 0.40 and 0.28 eV for the 4H- and 6H- substrates, respectively. A simple and phenomenological inverse relation between the energy gap and AGNR width works in the analyses of the ARPES data.

2.
Nano Lett ; 21(10): 4415-4422, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33978424

RESUMO

Spatially controlling the Fermi level of topological insulators and keeping their electronic states stable are indispensable processes to put this material into practical use for semiconductor spintronics devices. So far, however, such a method has not been established yet. Here we show a novel method for doping a hole into n-type topological insulators Bi2X3 (X= Se, Te) that overcomes the shortcomings of the previous reported methods. The key of this doping is to adsorb H2O on Bi2X3 decorated with a small amount of carbon, and its trigger is the irradiation of a photon with sufficient energy to excite the core electrons of the outermost layer atoms. This method allows controlling the doping amount by the irradiation time and acts as photolithography. Such a tunable doping makes it possible to design the electronic states at the nanometer scale and, thus, paves a promising avenue toward the realization of novel spintronics devices based on topological insulators.

3.
Nano Lett ; 21(6): 2406-2411, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33686864

RESUMO

Mapping of the local lattice distortion is required to understand the details of the chemical and physical properties of thin films. However, the resolution by the direct microscopic methods was insufficient to detect the local distortion. Here, we have demonstrated that the local distortion of a monatomic film on a substrate is estimated with high resolution using the moiré pattern of the topographic scanning tunneling microscopy image. The analysis focused on the apparently low centers of the moiré pattern of the hexagonal iron nitride monolayer on the Cu(111) substrate. The local distortion was visualized by estimating the displacement of the experimentally detected center position from the ideal position that is extracted from the adjacent center positions. The map of the local distortion revealed that the subsurface impurities are preferentially located on the largely distorted areas. This approach is widely applicable to other thin films on the substrates.

4.
J Phys Condens Matter ; 31(25): 255001, 2019 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-30870820

RESUMO

The robust bonding between Fe and N atoms has the potential to fabricate a ferromagnetic Fe2N monolayer of a square lattice independently of the symmetry of the substrate. The electronic and magnetic properties tuned by the symmetry of the substrates are investigated by comparing the results of scanning tunnel microscopy and x-ray absorption spectroscopy/magnetic circular dichroism of the square Fe2N monolayer on the Cu(1 1 1) substrate with that on the Cu(0 0 1) substrate. A periodic electronic modulation of the Fe2N monolayer on the Cu(1 1 1) substrate is induced by the stripe superlattice due to the difference of the lattice symmetry between the Fe2N monolayer and the Cu(1 1 1) substrate. The electronic and magnetic properties of the monolayer are largely affected by the hybridization with the Cu substrate and the Fe magnetic moment is much reduced compared to the monolayer on the Cu(0 0 1) substrate.

5.
Sci Rep ; 7(1): 12837, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-28993642

RESUMO

Structural and electronic properties of the SmB6(001) single-crystal surface prepared by Ar+ ion sputtering and controlled annealing are investigated by scanning tunneling microscopy. In contrast to the cases of cleaved surfaces, we observe a single phase surface with a non-reconstructed p(1 × 1) lattice on the entire surface at an optimized annealing temperature. The surface is identified as Sm-terminated on the basis of spectroscopic measurements. On a structurally uniform surface, the emergence of the in-gap state, a robust surface state against structural variation, is further confirmed inside a Kondo hybridization gap at 4.4 K by temperature and atomically-resolved spatial dependences of the differential conductance spectrum near the Fermi energy.

6.
Nano Lett ; 17(6): 3527-3532, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28520435

RESUMO

Local electron-phonon coupling of a one-dimensionally nanorippled graphene is studied on a SiC(0001) vicinal substrate. We have characterized local atomic and electronic structures of a periodically nanorippled graphene (3.4 nm period) prepared on a macrofacet of the 6H-SiC crystal using scanning tunneling microscopy/spectroscopy (STM/STS) and angle-resolved photoelectron spectroscopy (ARPES). The rippled graphene on the macrofacets distributes homogeneously over the 6H-SiC substrate in a millimeter scale, and thus replica bands are detected by the macroscopic ARPES. The STM/STS results indicate the strength of electron-phonon coupling to the out-of-plane phonon at the K̅ points of graphene is periodically modified in accordance with the ripple structure. We propose an interface carbon nanostructure with graphene nanoribbons between the surface rippled graphene and the substrate SiC that periodically modifies the electron-phonon coupling in the surface graphene.

7.
Small ; 12(29): 3956-66, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27295020

RESUMO

The effects of Pb intercalation on the structural and electronic properties of epitaxial single-layer graphene grown on SiC(0001) substrate are investigated using scanning tunneling microscopy (STM), noncontact atomic force microscopy, Kelvin probe force microscopy (KPFM), X-ray photoelectron spectroscopy, and angle-resolved photoemission spectroscopy (ARPES) methods. The STM results show the formation of an ordered moiré superstructure pattern induced by Pb atom intercalation underneath the graphene layer. ARPES measurements reveal the presence of two additional linearly dispersing π-bands, providing evidence for the decoupling of the buffer layer from the underlying SiC substrate. Upon Pb intercalation, the Si 2p core level spectra show a signature for the existence of PbSi chemical bonds at the interface region, as manifested in a shift of 1.2 eV of the bulk SiC component toward lower binding energies. The Pb intercalation gives rise to hole-doping of graphene and results in a shift of the Dirac point energy by about 0.1 eV above the Fermi level, as revealed by the ARPES measurements. The KPFM experiments have shown that decoupling of the graphene layer by Pb intercalation is accompanied by a work function increase. The observed increase in the work function is attributed to the suppression of the electron transfer from the SiC substrate to the graphene layer. The Pb intercalated structure is found to be stable in ambient conditions and at high temperatures up to 1250 °C. These results demonstrate that the construction of a graphene-capped Pb/SiC system offers a possibility of tuning the graphene electronic properties and exploring intriguing physical properties such as superconductivity and spintronics.

8.
J Phys Chem Lett ; 7(5): 900-4, 2016 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-26895075

RESUMO

The properties of Fe(1,10-phenanthroline)2(NCS)2 (Fe-phen) molecules deposited on Co/Cu(111) are studied with scanning tunneling microscopy (STM) operated in ultrahigh vacuum at low temperature (4 K) and ab initio calculations. Both the experimental and theoretical results are used to identify the high-spin (HS) state of Fe-phen. Additionally, the calculations reveal a strong spin-polarization of the density of states (DOS) and is validated experimentally using the spin sensitivity of spin-polarized STM. Finally, it is shown that the magnetic moment of the Fe-ion within HS Fe-phen is strongly magnetically coupled to the underlying magnetic Co through the NCS groups. These findings enable promising spintronic perspectives.

9.
Nature ; 503(7475): 242-6, 2013 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-24226888

RESUMO

Single magnetic atoms, and assemblies of such atoms, on non-magnetic surfaces have recently attracted attention owing to their potential use in high-density magnetic data storage and as a platform for quantum computing. A fundamental problem resulting from their quantum mechanical nature is that the localized magnetic moments of these atoms are easily destabilized by interactions with electrons, nuclear spins and lattice vibrations of the substrate. Even when large magnetic fields are applied to stabilize the magnetic moment, the observed lifetimes remain rather short (less than a microsecond). Several routes for stabilizing the magnetic moment against fluctuations have been suggested, such as using thin insulating layers between the magnetic atom and the substrate to suppress the interactions with the substrate's conduction electrons, or coupling several magnetic moments together to reduce their quantum mechanical fluctuations. Here we show that the magnetic moments of single holmium atoms on a highly conductive metallic substrate can reach lifetimes of the order of minutes. The necessary decoupling from the thermal bath of electrons, nuclear spins and lattice vibrations is achieved by a remarkable combination of several symmetries intrinsic to the system: time reversal symmetry, the internal symmetries of the total angular momentum and the point symmetry of the local environment of the magnetic atom.

10.
Nano Lett ; 12(9): 4805-9, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22906055

RESUMO

Magnetic anisotropy and magnetization dynamics of rare earth Gd atoms and dimers on Pt(111) and Cu(111) were investigated with inelastic tunneling spectroscopy. The spin excitation spectra reveal that giant magnetic anisotropies and lifetimes of the excited states of Gd are nearly independent of the supporting surfaces and the cluster size. In combination with theoretical calculations, we argue that the observed features are caused by strongly localized character of 4f electrons in Gd atoms and clusters.


Assuntos
Gadolínio/química , Nanopartículas Metálicas/química , Modelos Químicos , Simulação por Computador , Campos Magnéticos , Teste de Materiais , Nanopartículas Metálicas/ultraestrutura , Metais Terras Raras/química , Tamanho da Partícula , Propriedades de Superfície
11.
Nat Commun ; 3: 938, 2012 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-22760637

RESUMO

A nanoscale molecular switch can be used to store information in a single molecule. Although the switching process can be detected electrically in the form of a change in the molecule's conductance, adding spin functionality to molecular switches is a key concept for realizing molecular spintronic devices. Here we show that iron-based spin-crossover molecules can be individually and reproducibly switched between a combined high-spin, high-conduction state and a low-spin, low-conduction state, provided the individual molecule is decoupled from a metallic substrate by a thin insulating layer. These results represent a step to achieving combined spin and conduction switching functionality on the level of individual molecules.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...