Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Biochem ; 175(4): 439-446, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38153270

RESUMO

Aspartate/alanine exchange transporter (AspT) is a secondary transporter isolated from the lactic acid bacterium Tetragenococcus halophilus D10 strain. This transporter cooperates with aspartate decarboxylase to produce proton-motive force through decarboxylative phosphorylation. A method that successfully analyzes the AspT mechanism could serve as a prototype for elucidating the substrate transport mechanism of other exchange transporters; therefore, the purpose of this study was to search for conditions that improve the thermal stability of AspT for 3D structure analysis. We used the fluorescence size-exclusion chromatography-based thermostability assay to evaluate conditions that contribute to AspT stability. We found that the AspT thermostability was enhanced at pH 5.0 to 6.0 and in the presence of Na+ and Li+. Pyridoxal phosphate, a coenzyme of aspartate decarboxylase, also had a thermostabilizing effect on AspT. Under the conditions obtained from these results, it was possible to increase the temperature at which 50% of dimer AspT remained by 14°C. We expect these conditions to provide useful information for future structural analysis of AspT.


Assuntos
Alanina , Ácido Aspártico , Alanina/química , Proteínas de Membrana Transportadoras , Enterococcaceae
2.
J Biochem ; 172(4): 217-224, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-35818339

RESUMO

The aspartate:alanine exchanger family of membrane transporters includes industrially important transporters such as succinate exporter and glutamate exporter. No high-resolution structure is available from this family so far, and the transport mechanism of these transporters also remains unclear. In the present study, we focus on the oligomeric status of the aspartate:alanine antiporter (AspT) of Tetragenococcus halophilus, which is the prototype of this family. To investigate the oligomeric structure of AspT, we established a system that produces high yields of highly purified AspT and determined the oligomeric structure of AspT by analysis with size exclusion chromatography coupled with multi-angle light scattering and blue native PAGE and by comparison of the wild-type AspT with a single-cysteine mutant that forms spontaneous inter-molecular thiol crosslinking. All the results consistently support the notion that AspT is a homodimer in solutions and in membranes.


Assuntos
Alanina , Ácido Aspártico , Alanina/química , Antiporters/química , Ácido Aspártico/química , Cisteína , Enterococcaceae , Glutamatos , Proteínas de Membrana Transportadoras , Succinatos
3.
Sci Adv ; 3(7): e1603042, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28740863

RESUMO

Bovine cytochrome c oxidase (CcO), a 420-kDa membrane protein, pumps protons using electrostatic repulsion between protons transferred through a water channel and net positive charges created by oxidation of heme a (Fe a ) for reduction of O2 at heme a3 (Fe a3). For this process to function properly, timing is essential: The channel must be closed after collection of the protons to be pumped and before Fe a oxidation. If the channel were to remain open, spontaneous backflow of the collected protons would occur. For elucidation of the channel closure mechanism, the opening of the channel, which occurs upon release of CO from CcO, is investigated by newly developed time-resolved x-ray free-electron laser and infrared techniques with nanosecond time resolution. The opening process indicates that CuB senses completion of proton collection and binds O2 before binding to Fe a3 to close the water channel using a conformational relay system, which includes CuB, heme a3, and a transmembrane helix, to block backflow of the collected protons.


Assuntos
Monóxido de Carbono/química , Monóxido de Carbono/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/química , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Heme/química , Heme/metabolismo , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Oxirredução , Fotólise , Relação Estrutura-Atividade
4.
J Photochem Photobiol B ; 168: 124-131, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28214718

RESUMO

Activity of singlet oxygen sensitizers for photoinactivation of bacteria and photodynamic therapy of tumor cells has been evaluated using nonpathogenic model cells, such as Escherichia coli, Saccharomyces cerevisiae, and HeLa cells. Among them, E. coli, gram-negative bacterium, has complex membrane structures in the cell wall, resulting in an impermeable barrier to antimicrobial agents. Therefore, few singlet oxygen sensitizers have photoinactivation activities toward E. coli at low concentrations. Recently polycationic porphyrins have received much attention as a new type of singlet oxygen sensitizers because they have strong binding affinities for DNA and proteins. Here, we prepared 13 types of di- and tricationic P- and Sb-porphyrin sensitizers substituted with the N-alkylpyridinium (APy) group at the axial ligand or the meso position to examine their bactericidal activity toward E. coli under visible-light irradiation. Photobactericidal activities were evaluated using half-life (T1/2 in min) of E. coli and minimum effective concentrations of the porphyrin sensitizers. Di-cationic P-porphyrins containing the Apy group at meso position exhibited bactericidal activity under dark conditions. Tricationic porphyrins showed a higher bactericidal activity than monocationic porphyrins. It was found that the bactericidal activity depended on the alkyl chain length of APy. Tricationic porphyrin with N-heptylpyridinium in two axial ligands was the most reactive for the photoinactivation of E. coli.


Assuntos
Escherichia coli/efeitos da radiação , Fármacos Fotossensibilizantes/química , Porfirinas/farmacologia , Piridinas/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos Locais/química , Anti-Infecciosos Locais/farmacologia , Anti-Infecciosos Locais/efeitos da radiação , Escherichia coli/efeitos dos fármacos , Luz , Fármacos Fotossensibilizantes/farmacologia , Oxigênio Singlete/farmacologia , Relação Estrutura-Atividade
5.
Phys Chem Chem Phys ; 14(13): 4605-13, 2012 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-22354497

RESUMO

Understanding the electron transfer dynamics at the interface between dye sensitizer and semiconductor nanoparticle is very important for both a fundamental study and development of dye-sensitized solar cells (DSCs), which are a potential candidate for next generation solar cells. In this study, we have characterized the ultrafast photoexcited electron dynamics in a newly produced linearly-linked two dye co-sensitized solar cell using both a transient absorption (TA) and an improved transient grating (TG) technique, in which tin(IV) 2,11,20,29-tetra-tert-butyl-2,3-naphthalocyanine (NcSn) and cis-diisothiocyanato-bis(2,2'-bipyridyl-4,4'-dicarboxylato)ruthenium(II) bis(tetrabutylammonium) (N719) are molecularly and linearly linked and are bonded to the surface of a nanocrystalline tin dioxide (SnO(2)) electrode by a metal-O-metal linkage (i.e. SnO(2)-NcSn-N719). By comparing the TA and TG kinetics of NcSn, N719, and hybrid NcSn-N719 molecules adsorbed onto both of the SnO(2) and zirconium dioxide (ZrO(2)) nanocrystalline films, the forward and backward electron transfer dynamics in SnO(2)-NcSn-N719 were clarified. We found that there are two pathways for electron injection from the linearly-linked two dye molecules (NcSn-N719) to SnO(2). The first is a stepwise electron injection, in which photoexcited electrons first transfer from N719 to NcSn with a transfer time of 0.95 ps and then transfer from NcSn to the conduction band (CB) of SnO(2) with two timescales of 1.6 ps and 4.2 ps. The second is direct photoexcited electron transfer from N719 to the CB of SnO(2) with a timescale of 20-30 ps. On the other hand, back electron transfer from SnO(2) to NcSn is on a timescale of about 2 ns, which is about three orders of magnitude slower compared to the forward electron transfer from NcSn to SnO(2). The back electron transfer from NcSn to N719 is on a timescale of about 40 ps, which is about one order slower compared to the forward electron transfer from N719 to NcSn. These results demonstrate that photoexcited electrons can be effectively injected into SnO(2) from both of the N719 and NcSn dyes.


Assuntos
Corantes/química , Simulação de Dinâmica Molecular , Nanoestruturas/química , Compostos Organometálicos/química , Energia Solar , Compostos de Estanho/química , Zircônio/química , Eletrodos , Elétrons
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...