Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
FASEB J ; 37(1): e22708, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36562544

RESUMO

Inflammatory bowel disease (IBD) is a chronic persistent intestinal disorder, with ulcerative colitis and Crohn's disease being the most common. However, the physio-pathological development of IBD is still unknown. Therefore, research on the etiology and treatment of IBD has been conducted using a variety of approaches. Short-chain fatty acids such as 3-hydroxybutyrate (3-HB) are known to have various physiological activities. In particular, the production of 3-HB by the intestinal microflora is associated with the suppression of various inflammatory diseases. In this study, we investigated whether poly-D-3-hydroxybutyric acid (PHB), a polyester of 3-HB, is degraded by intestinal microbiota and works as a slow-release agent of 3-HB. Further, we examined whether PHB suppresses the pathogenesis of IBD models. As long as a PHB diet increased 3-HB concentrations in the feces and blood, PHB suppressed weight loss and histological inflammation in a dextran sulfate sodium-induced IBD model. Furthermore, PHB increased the accumulation of regulatory T cells in the rectum without affecting T cells in the spleen. These results indicate that PHB has potential applications in treating diseases related to the intestinal microbiota as a sustained 3-HB donor. We show for the first time that biodegradable polyester exhibits intestinal bacteria-mediated bioactivity toward IBD. The use of bioplastics, which are essential materials for sustainable social development, represents a novel approach to diseases related to dysbiosis, including IBD.


Assuntos
Doenças Inflamatórias Intestinais , Linfócitos T Reguladores , Humanos , Ácido 3-Hidroxibutírico/farmacologia , Ácido 3-Hidroxibutírico/metabolismo , Linfócitos T Reguladores/metabolismo , Regulação para Cima , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Hidroxibutiratos/farmacologia , Poliésteres
2.
Biochem Biophys Res Commun ; 599: 24-30, 2022 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-35168060

RESUMO

Inflammatory bowel disease (IBD) is a chronic inflammatory disease in the colon characterized by excessive activation of T cells. Glycosphingolipids (GSLs) are composed of lipid rafts in cellular membranes, and their content is linked to immune cell function. In the present study, we investigated the involvement of GSLs in IBD. Microarray data showed that in IBD patients, the expression of only UDP-glucose ceramide glucosyltransferase (UGCG) decreased among the GSLs synthases. Ad libitum access to dextran sulfate sodium (DSS) resulted in decreased UGCG and glucosylceramide (GlcCer) content in mesenteric lymph nodes and T cells from the spleen. Furthermore, the knockdown of Ugcg in T cells exacerbated the pathogenesis of colitis, which was accompanied by a decrease in Treg levels. Treatment with GlcCer nanoparticles prevented DSS-induced colitis. These results suggested that GlcCer in T cells is involved in the pathogenesis of IBD. Furthermore, GlcCer nanoparticles are a potential efficacious therapeutic target for IBD patients.


Assuntos
Glucosilceramidas/metabolismo , Glucosiltransferases/metabolismo , Doenças Inflamatórias Intestinais/patologia , Linfócitos T/metabolismo , Animais , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Glucosilceramidas/administração & dosagem , Glucosilceramidas/genética , Glucosiltransferases/genética , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Nanopartículas/administração & dosagem , Nanopartículas/química , Linfócitos T/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA