Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 3376, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336912

RESUMO

KPNA1 is a mediator of nucleocytoplasmic transport that is abundantly expressed in the mammalian brain and regulates neuronal differentiation and synaptic function. De novo mutations in Kpna1 have been identified using genome-wide association studies in humans with schizophrenia; however, it remains unclear how KPNA1 contributes to schizophrenia pathogenesis. Recent studies have suggested a complex combination of genetic and environmental factors that are closely related to psychiatric disorders. Here, we found that subchronic administration of phencyclidine, a psychotropic drug, induced vulnerability and behavioral abnormalities consistent with the symptoms of schizophrenia in Kpna1-deficient mice. Microarray assessment revealed that the expression levels of dopamine d1/d2 receptors, an RNA editing enzyme, and a cytoplasmic dynein component were significantly altered in the nucleus accumbens brain region in a gene-environment (G × E) interaction-dependent manner. Our findings demonstrate that Kpna1-deficient mice may be useful as a G × E interaction mouse model for psychiatric disorders and for further investigation into the pathogenesis of such diseases and disorders.


Assuntos
Esquizofrenia , Humanos , Camundongos , Animais , Esquizofrenia/induzido quimicamente , Esquizofrenia/genética , Interação Gene-Ambiente , Estudo de Associação Genômica Ampla , Psicotrópicos/farmacologia , Fenciclidina/farmacologia , Núcleo Accumbens/metabolismo , Mamíferos/metabolismo , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
2.
J Oral Biosci ; 66(1): 76-81, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37979656

RESUMO

OBJECTIVES: While chondrocytes have mitochondria, they receive little O2 from the bloodstream. Sulfur respiration, an essential energy production system in mitochondria, uses supersulfides instead of O2. Supersulfides are inorganic and organic sulfides with catenated sulfur atoms and are primarily produced by cysteinyl tRNA synthetase-2 (CARS2). Here, we investigated the role of supersulfides in chondrocyte proliferation and bone growth driven by growth plate chondrocyte proliferation. METHODS: We examined the effects of NaHS, an HS-/H2S donor, and cystine, the cellular source of cysteine, on the proliferation of mouse primary chondrocytes and growth of embryonic mouse tibia in vitro. We also examined the effect of RNA interference acting on the Cars2 gene on chondrocyte proliferation in the presence of cystine. RESULTS: NaHS (30 µmol/L) enhanced tibia longitudinal growth in vitro with expansion of the proliferating zone of their growth plates. While NaHS (30 µmol/L) also promoted chondrocyte proliferation only under normoxic conditions (20 % O2), cystine (0.5 mmol/L) promoted it under both normoxic and hypoxic (2 % O2) conditions. Cars2 gene knockdown abrogated the ability of cystine (0.5 mmol/L) to promote chondrocyte proliferation under normoxic conditions, indicating that supersulfides produced by CARS2 were responsible for the cystine-dependent promotion of bone growth. CONCLUSIONS: The presented results indicate that supersulfides play a vital role in bone growth achieved by chondrocyte proliferation in the growth plates driven by sulfur respiration.


Assuntos
Condrócitos , Lâmina de Crescimento , Camundongos , Animais , Cistina/farmacologia , Proliferação de Células , Desenvolvimento Ósseo , Enxofre/farmacologia
3.
Cell Rep ; 42(8): 112884, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37516964

RESUMO

NUP98 and NUP214 form chimeric fusion proteins that assemble into phase-separated nuclear bodies containing CRM1, a nuclear export receptor. However, these nuclear bodies' function in controlling gene expression remains elusive. Here, we demonstrate that the nuclear bodies of NUP98::HOXA9 and SET::NUP214 promote the condensation of mixed lineage leukemia 1 (MLL1), a histone methyltransferase essential for the maintenance of HOX gene expression. These nuclear bodies are robustly associated with MLL1/CRM1 and co-localized on chromatin. Furthermore, whole-genome chromatin-conformation capture analysis reveals that NUP98::HOXA9 induces a drastic alteration in high-order genome structure at target regions concomitant with the generation of chromatin loops and/or rearrangement of topologically associating domains in a phase-separation-dependent manner. Collectively, these results show that the phase-separated nuclear bodies of nucleoporin fusion proteins can enhance the activation of target genes by promoting the condensation of MLL1/CRM1 and rearrangement of the 3D genome structure.


Assuntos
Leucemia , Complexo de Proteínas Formadoras de Poros Nucleares , Humanos , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Carioferinas/genética , Carioferinas/metabolismo , Proteínas de Homeodomínio/metabolismo , Leucemia/metabolismo , Cromatina , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Corpos Nucleares
4.
Nucleic Acids Res ; 51(14): 7602-7618, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37260089

RESUMO

To facilitate selfish replication, viruses halt host gene expression in various ways. The nuclear export of mRNA is one such process targeted by many viruses. SARS-CoV-2, the etiological agent of severe acute respiratory syndrome, also prevents mRNA nuclear export. In this study, Nsp14, a bifunctional viral replicase subunit, was identified as a novel inhibitor of mRNA nuclear export. Nsp14 induces poly(A)+ RNA nuclear accumulation and the dissolution/coalescence of nuclear speckles. Genome-wide gene expression analysis revealed the global dysregulation of splicing and 3'-end processing defects of replication-dependent histone mRNAs by Nsp14. These abnormalities were also observed in SARS-CoV-2-infected cells. A mutation introduced at the guanine-N7-methyltransferase active site of Nsp14 diminished these inhibitory activities. Targeted capillary electrophoresis-mass spectrometry analysis (CE-MS) unveiled the production of N7-methyl-GTP in Nsp14-expressing cells. Association of the nuclear cap-binding complex (NCBC) with the mRNA cap and subsequent recruitment of U1 snRNP and the stem-loop binding protein (SLBP) were impaired by Nsp14. These data suggest that the defects in mRNA processing and export arise from the compromise of NCBC function by N7-methyl-GTP, thus exemplifying a novel viral strategy to block host gene expression.


Assuntos
Transporte Ativo do Núcleo Celular , COVID-19 , RNA Mensageiro , SARS-CoV-2 , Proteínas não Estruturais Virais , Humanos , COVID-19/virologia , Exorribonucleases/metabolismo , Guanosina Trifosfato/metabolismo , RNA Mensageiro/metabolismo , RNA Viral/genética , RNA Viral/metabolismo , SARS-CoV-2/metabolismo , Proteínas não Estruturais Virais/metabolismo
5.
Genes Cells ; 28(6): 457-465, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36945130

RESUMO

The extracellular-signal-regulated-kinase (ERK) signaling pathway is essential for cell proliferation and is frequently deregulated in human tumors such as pancreatic cancers. ACAGT-007a (GT-7), an anti-cancer compound, stimulates ERK phosphorylation, thereby inducing growth inhibition and apoptosis in T3M4 pancreatic cancer cells. However, how GT-7 stimulates ERK phosphorylation and induces apoptosis in ERK-active T3M4 cells remains unclear. To look into the mechanism, we performed a spatiotemporal analysis of ERK phosphorylation mediated by GT-7 in T3M4 cells. The immunoblotting showed that GT-7 stimulates ERK phosphorylation within 1 h, which was more remarkable after 2 h. Importantly, apoptosis induction as evaluated by the cleaved Caspase-3 was observed only after 2-h incubation with GT-7. The immunofluorescence staining revealed the enrichment of phosphorylated ERK (phospho-ERK) in the nucleus upon 1-h incubation with GT-7. Fractionation experiments showed that GT-7 increases phospho-ERK levels in the cytoplasm within 1 h, whereas nuclear phospho-ERK accumulation is observed after 2-h incubation with GT-7. MEK inhibition by U0126 significantly diminishes nuclear phospho-ERK distribution and apoptosis induction stimulated by GT-7. Thus, GT-7 may initiate the induction of ERK phosphorylation in the cytoplasm, which leads to phospho-ERK enrichment in the nucleus. This nuclear phospho-ERK accumulation by GT-7 precedes and may underlie apoptosis induction in T3M4.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Neoplasias Pancreáticas , Humanos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fosforilação , Transdução de Sinais , Neoplasias Pancreáticas/tratamento farmacológico , Apoptose , Sistema de Sinalização das MAP Quinases , Neoplasias Pancreáticas
6.
J Clin Invest ; 133(2)2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36647821

RESUMO

Preimplantation embryo arrest (PREMBA) is a common cause of female infertility and recurrent failure of assisted reproductive technology. However, the genetic basis of PREMBA is largely unrevealed. Here, using whole-exome sequencing data from 606 women experiencing PREMBA compared with 2,813 controls, we performed a population and gene-based burden test and identified a candidate gene, karyopherin subunit α7 (KPNA7). In vitro studies showed that identified sequence variants reduced KPNA7 protein levels, impaired KPNA7 capacity for binding to its substrate ribosomal L1 domain-containing protein 1 (RSL1D1), and affected KPNA7 nuclear transport activity. Comparison between humans and mice suggested that mouse KPNA2, rather than mouse KPNA7, acts as an essential karyopherin in embryonic development. Kpna2-/- female mice showed embryo arrest due to zygotic genome activation defects, recapitulating the phenotype of human PREMBA. In addition, female mice with an oocyte-specific knockout of Rsl1d1 recapitulated the phenotype of Kpna2-/- mice, demonstrating the vital role of substrate RSL1D1. Finally, complementary RNA (cRNA) microinjection of human KPNA7, but not mouse Kpna7, was able to rescue the embryo arrest phenotype in Kpna2-/- mice, suggesting mouse KPNA2 might be a homologue of human KPNA7. Our findings uncovered a mechanistic understanding for the pathogenesis of PREMBA, which acts by impairing nuclear protein transport, and provide a diagnostic marker for PREMBA patients.


Assuntos
Proteínas da Gravidez , alfa Carioferinas , Animais , Gravidez , Camundongos , Humanos , Feminino , alfa Carioferinas/genética , alfa Carioferinas/metabolismo , Oócitos/metabolismo , Transporte Ativo do Núcleo Celular , Carioferinas/metabolismo , Blastocisto/metabolismo , Proteínas da Gravidez/metabolismo , Proteínas Ribossômicas/metabolismo
7.
In Vitro Cell Dev Biol Anim ; 59(1): 10-18, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36689044

RESUMO

Osteoblasts produce the receptor activator of nuclear factor-kappa B ligand (RANKL) and osteoprotegerin, the inducer and the suppressor of osteoclast differentiation and activation. We previously proposed that the degradation of osteoprotegerin by lysine-specific gingipain of Porphyromonas gingivalis and neutrophil elastase is one of the mechanisms of bone resorption associated with infection and inflammation. In the present study, we found that cathepsin K (CTSK) also degraded osteoprotegerin in an acidic milieu and the buffer with a pH of 7.4. The 37 k fragment of osteoprotegerin produced by the reaction with CTSK was further degraded into low molecular weight fragments, including a 13 k fragment, depending on the reaction time. The N-terminal amino acid sequence of the 37 k fragment matched that of the intact osteoprotegerin, indicating that CTSK preferentially hydrolyzes the death domain-like region of osteoprotegerin, not its RANKL-binding region. The 13 k fragment of osteoprotegerin was the C-terminal 13 k portion within the RANKL-binding region of the 37 k fragment. Finally, CTSK restored RANKL-dependent osteoclast differentiation that was suppressed by the addition of osteoprotegerin. Collectively, CTSK is a possible positive regulator of osteoclastogenesis.


Assuntos
Osteogênese , Osteoprotegerina , Animais , Osteoprotegerina/metabolismo , Catepsina K/metabolismo , Glicoproteínas/metabolismo , Osteoclastos/metabolismo , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Glicoproteínas de Membrana/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Proteínas de Transporte/metabolismo , Ligante RANK/metabolismo , Diferenciação Celular
8.
J Oral Biosci ; 65(1): 111-118, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36640838

RESUMO

OBJECTIVES: Glycocalyx lines the vascular intraluminal space that regulates fluid movement between the intra- and extra-vascular compartments. The depletion of glycocalyx (GCX) is associated with leukocyte accumulation, possibly causing the endothelial cells to become hyperpermeable in various organs, including oral tissues. Whether neutrophils or macrophages are responsible for developing interstitial edema remains controversial. We explored the pathophysiological mechanism of interstitial edema by examining the role of reactive neutrophils and macrophages and their interactions with GCX. METHODS: An anti-MHC class I antibody was administered intravenously to male BALB/c mice to induce pulmonary edema. Pulmonary edema was evaluated by measuring the lung wet-to-dry weight ratio. Changes in the GCX were evaluated by electron microscopy and measurements of the serum level of soluble syndecan-1. Heparin sulfate was administered to examine its protective effect on the GCX. The macrophages were depleted using clodronate to examine their role in developing edema. RESULTS: The GCX degradation induced by the anti-MHC class I antibody was accompanied by increased serum syndecan-1 and heparan sulfate levels. Macrophage depletion inhibited the development of pulmonary edema, and the administration of supplemental heparin suppressed the edema. CONCLUSIONS: We demonstrated that the degradation of the GCX induced by the anti-MHC class I antibody was suppressed by macrophage depletion. These results suggest that macrophages may play a key role in interstitial edema. Heparin inhibited both the degradation of the GCX and interstitial edema. This study's results may be extrapolated to develop an interventional strategy for inhibiting interstitial edema in various organs.


Assuntos
Células Endoteliais , Edema Pulmonar , Camundongos , Animais , Masculino , Células Endoteliais/metabolismo , Sindecana-1/metabolismo , Sindecana-1/farmacologia , Glicocálix/metabolismo , Edema Pulmonar/metabolismo , Heparina/metabolismo , Heparina/farmacologia
9.
J Clin Biochem Nutr ; 71(3): 191-197, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36447486

RESUMO

Nitric oxide and reactive oxygen species regulate bone remodeling, which occurs via bone formation and resorption by osteoblasts and osteoclasts, respectively. Recently, we found that 8-nitro-cGMP, a second messenger of nitric oxide and reactive oxygen species, promotes osteoclastogenesis. Here, we investigated the formation and function of 8-nitro-cGMP in osteoblasts. Mouse calvarial osteoblasts were found to produce 8-nitro-cGMP, which was augmented by tumor necrosis factor-α (10 ng/ml) and interleukin-1ß (1 ng/ml). These cytokines suppressed osteoblastic differentiation in a NO synthase activity-dependent manner. Exogenous 8-nitro-cGMP (30 µmol/L) suppressed expression of osteoblastic phenotypes, including mineralization, in clear contrast to the enhancement of mineralization by osteoblasts induced by 8-bromo-cGMP, a cell membrane-permeable analog of cGMP. It is known that reactive sulfur species denitrates and degrades 8-nitro-cGMP. Mitochondrial cysteinyl-tRNA synthetase plays a crucial role in the endogenous production of RSS. The expression of osteoblastic phenotypes was suppressed by not only exogenous 8-nitro-cGMP but also by silencing of the Cars2 gene, indicating a role of endogenous 8-nitro-cGMP in suppressing the expression of osteoblastic phenotypes. These results suggest that 8-nitro-cGMP is a negative regulator of osteoblastic differentiation.

10.
Jpn Dent Sci Rev ; 58: 258-267, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36159186

RESUMO

Primary failure of eruption (PFE) is a rare disorder defined as incomplete tooth eruption despite the presence of a clear eruption pathway. PFE is known to be caused by rare variants in the parathyroid hormone 1 receptor gene (PTH1R). Although several PTH1R variants have been reported, the etiology of PFE remains unclear. However, important studies that help elucidate the pathology of PFE have recently been published. The purpose of this review is to summarize current treatment options, clinical symptoms or phenotypes for diagnosis, genetic information including solid evidence in mouse disease models and disease-specific induced pluripotent stem cells, thus approaching the etiology of PFE from the perspective of the latest research.

11.
In Vitro Cell Dev Biol Anim ; 58(7): 521-528, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35925448

RESUMO

The articular cartilage is an avascular tissue, and oxygen tensions in its superficial and deeper zones are estimated to be 6% and 1%. Degeneration of the articular cartilage begins from the surface zone in osteoarthritis. We previously reported that monocarboxylate transporter-1, a transmembrane transporter for monocarboxylates, played an essential role in the interleukin-1ß-induced expression of NADPH oxidase-2, a reactive oxygen species-producing enzyme, and reactive oxygen species-dependent death of mouse chondrogenic ATDC5 cells cultured in a normal condition (20% oxygen). Here, we investigated the effect of oxygen tension on interleukin-1ß-induced events described above in ATDC5 cells. Interleukin-1ß induced the death of ATDC5 cells under 20% and 6% oxygen but did not under 2% and 1% oxygen. Interleukin-1ß induced Mct1 (monocarboxylate transporter-1 gene) and Nox2 (NADPH oxidase-2 gene) mRNAs' expression under 20% oxygen in 24 h, respectively, but not under 2% oxygen. On the other hand, a 24-h incubation with interleukin-1ß upregulated the expression of Nos2 (inducible nitric oxide synthase gene) mRNA irrespective of oxygen tension. Furthermore, inhibition of I-κB kinase suppressed the interleukin-1ß-induced expression of Mct1 mRNA in the cells cultured under 20% and 2% oxygen, indicating NF-κB plays an essential role in the induction of the Mct1 gene expression. The results suggest that interleukin-1ß induces monocarboxylate transporter-1 in an oxygen tension-dependent manner required for cell death in ATDC5 cells. These results might explain some part of the degenerative process of the articular cartilage, which begins from its superficial zone in the pathogenesis of osteoarthritis.


Assuntos
Cartilagem Articular , Osteoartrite , Doenças dos Roedores , Animais , Células Cultivadas , Condrócitos , Interleucina-1beta/metabolismo , Interleucina-1beta/farmacologia , Camundongos , NADPH Oxidases/metabolismo , NADPH Oxidases/farmacologia , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/patologia , Oxigênio/metabolismo , Oxigênio/farmacologia , RNA Mensageiro/genética , Espécies Reativas de Oxigênio/metabolismo , Doenças dos Roedores/metabolismo , Doenças dos Roedores/patologia
12.
Front Neurosci ; 16: 905991, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35844217

RESUMO

Importin α3 (Gene: Kpna3, the ortholog of human Importin α4) is a member of the importin α family and participates in nucleocytoplasmic transport by forming trimeric complexes between cargo proteins and importin ß1. Evidence from human studies has indicated that single nucleotide polymorphisms (SNP) in the KPNA3 gene are associated with the occurrence of several psychiatric disorders accompanied by abnormal reward-related behavior, including schizophrenia, major depression, and substance addiction. However, the precise roles of importin α3 in controlling reward processing and motivation are still unclear. In this study, we evaluated the behavioral effects of Kpna3 knockout (KO) in mice on performance in touchscreen operant chamber-based tasks evaluating simple (fixed-ratio) and effortful (progressive-ratio) reward-seeking behaviors. While Kpna3 KO mice showed no significant differences in operant reward learning on a fixed-ratio schedule, they demonstrated significantly increased motivation (increased break point) to instrumentally respond for sucrose on a progressive-ratio schedule. We additionally measured the number of c-Fos-positive cells, a marker of neural activity, in 20 regions of the brain and identified a network of brain regions based on their interregional correlation coefficients. Network and graph-theoretic analyses suggested that Kpna3 deficiency enhanced overall interregional functional connectivity. These findings suggest the importance of Kpna3 in motivational control and indicate that Kpna3 KO mice may be an attractive line for modeling motivational abnormalities associated with several psychiatric disorders.

13.
Commun Biol ; 5(1): 483, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35590097

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) ORF6 is an antagonist of interferon (IFN)-mediated antiviral signaling, achieved through the prevention of STAT1 nuclear localization. However, the exact mechanism through which ORF6 prevents STAT1 nuclear trafficking remains unclear. Herein, we demonstrate that ORF6 directly binds to STAT1 with or without IFN stimulation, resulting in the nuclear exclusion of STAT1. ORF6 also recognizes importin α subtypes with different modes, in particular, high affinity to importin α1 but a low affinity to importin α5. Although ORF6 potentially disrupts the importin α/importin ß1-mediated nuclear transport, thereby suppressing the nuclear translocation of the other classical nuclear localization signal-containing cargo proteins, the inhibitory effect of ORF6 is modest when compared with that of STAT1. The results indicate that the drastic nuclear exclusion of STAT1 is attributed to the specific binding with ORF6, which is a distinct strategy for the importin α1-mediated pathway. Combined with the results from a newly-produced replicon system and a hamster model, we conclude that SARS-CoV-2 ORF6 acts as a virulence factor via regulation of nucleocytoplasmic trafficking to accelerate viral replication, resulting in disease progression.


Assuntos
COVID-19 , SARS-CoV-2 , Proteínas Virais/metabolismo , Animais , Antivirais , Transporte Biológico , Cricetinae , Proteínas Virais/genética , Replicação Viral , alfa Carioferinas/genética , alfa Carioferinas/metabolismo
14.
Antiviral Res ; 199: 105268, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35271914

RESUMO

Experiments with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are limited by the need for biosafety level 3 (BSL3) conditions. A SARS-CoV-2 replicon system rather than an in vitro infection system is suitable for antiviral screening since it can be handled under BSL2 conditions and does not produce infectious particles. However, the reported replicon systems are cumbersome because of the need for transient transfection in each assay. In this study, we constructed a bacterial artificial chromosome vector (the replicon-BAC vector) including the SARS-CoV-2 replicon and a fusion gene encoding Renilla luciferase and neomycin phosphotransferase II, examined the antiviral effects of several known compounds, and then established a cell line stably harboring the replicon-BAC vector. Several cell lines transiently transfected with the replicon-BAC vector produced subgenomic replicon RNAs (sgRNAs) and viral proteins, and exhibited luciferase activity. In the transient replicon system, treatment with remdesivir or interferon-ß but not with camostat or favipiravir suppressed the production of viral agents and luciferase, indicating that luciferase activity corresponds to viral replication. VeroE6/Rep3, a stable replicon cell line based on VeroE6 cells, was successfully established and continuously produced viral proteins, sgRNAs and luciferase, and their production was suppressed by treatment with remdesivir or interferon-ß. Molnupiravir, a novel coronavirus RdRp inhibitor, inhibited viral replication more potently in VeroE6/Rep3 cells than in VeroE6-based transient replicon cells. In summary, our stable replicon system will be a powerful tool for the identification of SARS-CoV-2 antivirals through high-throughput screening.


Assuntos
COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Ensaios de Triagem em Larga Escala , Humanos , Replicon , SARS-CoV-2/genética , Replicação Viral
15.
Biochem Biophys Res Commun ; 597: 44-51, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123265

RESUMO

Osteocytes sense the microenvironmental stimuli, including mechanical stress, and regulate bone resorption by osteoclasts and bone formation by osteoblasts. Diabetes and cancer metastasis to bone raise l-lactic acid in the bone tissue, causing acidification. Here, we investigated the effects of l-lactic acid and extracellular acidification on the function of mouse Ocy454 osteocytes. L- and d-lactic acid with low chiral selectivity and acidification of the medium raised the production of sclerostin and osteoprotegerin by Ocy454 cells. The mRNA expression of their genes increased after either treatment of L- and d-lactic acid or acidification of the medium. Furthermore, the conditioned medium of Ocy454 cells cultured in an acidic environment suppressed the induction of alkaline phosphatase activity in MC3T3-E1 cells, which was recovered by the anti-sclerostin antibody. While it is reported that HDAC5 inhibits the transcription of the sclerostin gene, extracellular acidification reduced the nuclear localization of HDAC5 in Ocy454 cells. While calmodulin kinase II (CaMKII) is known to phosphorylate and induce extranuclear translocation of HDAC5, KN-62, an inhibitor of CaMKII lowered the expression of the sclerostin gene in Ocy454 cells. Collectively, extracellular acidification is a microenvironmental factor that modulates osteocyte functions.

16.
Mucosal Immunol ; 15(2): 289-300, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35013573

RESUMO

Dietary ω3 fatty acids have important health benefits and exert their potent bioactivity through conversion to lipid mediators. Here, we demonstrate that microbiota play an essential role in the body's use of dietary lipids for the control of inflammatory diseases. We found that amounts of 10-hydroxy-cis-12-cis-15-octadecadienoic acid (αHYA) and 10-oxo-cis-12-cis-15-octadecadienoic acid (αKetoA) increased in the feces and serum of specific-pathogen-free, but not germ-free, mice when they were maintained on a linseed oil diet, which is high in α-linolenic acid. Intake of αKetoA, but not αHYA, exerted anti-inflammatory properties through a peroxisome proliferator-activated receptor (PPAR)γ-dependent pathway and ameliorated hapten-induced contact hypersensitivity by inhibiting the development of inducible skin-associated lymphoid tissue through suppression of chemokine secretion from macrophages and inhibition of NF-κB activation in mice and cynomolgus macaques. Administering αKetoA also improved diabetic glucose intolerance by inhibiting adipose tissue inflammation and fibrosis through decreased macrophage infiltration in adipose tissues and altering macrophage M1/M2 polarization in mice fed a high-fat diet. These results collectively indicate that αKetoA is a novel postbiotic derived from α-linolenic acid, which controls macrophage-associated inflammatory diseases and may have potential for developing therapeutic drugs as well as probiotic food products.


Assuntos
Dieta Hiperlipídica , Macrófagos , Tecido Adiposo , Animais , Dieta Hiperlipídica/efeitos adversos , Lipídeos , Macaca fascicularis/metabolismo , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/metabolismo
17.
Semin Cell Dev Biol ; 121: 82-98, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34426066

RESUMO

Regulated nucleocytoplasmic transport is central to the changes in gene expression that underpin cellular development and homeostasis, including in the testis, and proteins in the importin family are the predominant facilitators of cargo transport through the nuclear envelope. Reports documenting cell-specific profiles of importin transcripts and proteins during spermatogenesis led us to hypothesize that importins facilitate developmental switches in the testis. More recently, importins have been shown to serve additional functions, both inside and outside the nucleus; these include acting as subcellular scaffolding, mediating cellular stress responses, and controlling transcription. This paper seeks to provide an overview and update on the functions of importin proteins, with a focus on testis development and spermatogenesis. We present an extended survey of importins by combining published single cell RNAseq data with immunohistochemistry on developing and adult mouse testes. This approach reinforces and broadens knowledge of importins in biological processes, including in spermatogenesis and during testis development, revealing additional avenues for impactful investigations.


Assuntos
Carioferinas/metabolismo , Espermatogênese/genética , Animais , Fertilidade , Masculino , Camundongos
18.
PLoS One ; 16(11): e0258364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34767585

RESUMO

Importin α1/KPNA1 is a member of the Importin α family widely present in the mammalian brain and has been characterized as a regulator of neuronal differentiation, synaptic functionality, and anxiety-like behavior. In humans, a de novo mutation of the KPNA1 (human Importin α5) gene has been linked with schizophrenia; however, the precise roles of KPNA1 in disorder-related behaviors are still unknown. Moreover, as recent studies have highlighted the importance of gene-environment interactions in the development of psychiatric disorders, we investigated the effects of Kpna1 deletion and social isolation stress, a paradigm that models social stress factors found in human patients, on psychiatric disorder-related behaviors in mice. Through assessment in a behavioral battery, we found that Kpna1 knockout resulted in the following behavioral phenotype: (1) decreased anxiety-like behavior in an elevated plus maze test, (2) short term memory deficits in novel object recognition test (3) impaired sensorimotor gating in a prepulse inhibition test. Importantly, exposure to social isolation stress resulted in additional behavioral abnormalities where isolated Kpna1 knockout mice exhibited: (1) impaired aversive learning and/or memory in the inhibitory avoidance test, as well as (2) increased depression-like behavior in the forced swim test. Furthermore, we investigated whether mice showed alterations in plasma levels of stress-associated signal molecules (corticosterone, cytokines, hormones, receptors), and found that Kpna1 knockout significantly altered levels of corticosterone and LIX (CXCL5). Moreover, significant decreases in the level of prolactin were found in all groups except for group-housed wild type mice. Our findings demonstrate that Kpna1 deletion can trigger widespread behavioral abnormalities associated with psychiatric disorders, some of which were further exacerbated by exposure to adolescent social isolation. The use of Kpna1 knockout mice as a model for psychiatric disorders may show promise for further investigation of gene-environment interactions involved in the pathogenesis of psychiatric disorders.


Assuntos
Ansiedade/genética , Comportamento Animal , Depressão/genética , Esquizofrenia/genética , Isolamento Social/psicologia , alfa Carioferinas/genética , Animais , Ansiedade/sangue , Quimiocina CXCL5/sangue , Corticosterona/sangue , Depressão/sangue , Modelos Animais de Doenças , Feminino , Aprendizagem , Masculino , Memória de Curto Prazo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prolactina/sangue , Esquizofrenia/sangue , Transdução de Sinais/genética
19.
Immunology ; 162(3): 306-313, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33131052

RESUMO

Bisphosphonates distributed to bone exert toxic effects specifically towards osteoclasts. On the other hand, intravenous administration of a nitrogen-containing bisphosphonate (N-BP) such as zoledronate induces acute-phase reactions (APRs), including influenza-like fever 1 day later, indicating an interaction with immunocompetent cells circulating blood. Although it has been reported that activation of γδ T cells is pivotal to induce an APR following treatment with zoledronate, downstream events, including the production of inflammatory cytokines after activation of γδ T cells, remain obscure. We investigated the effects of zoledronate on inflammatory cytokine expression in human peripheral blood mononuclear cells (PBMCs) in vitro. While zoledronate induced mRNA expressions of tumour necrosis factor-α (TNF-α), interleukin (IL)-1ß, IL-6 and interferon-γ (IFN-γ) in PBMC, depletion of γδ T cells abolished that zoledronate-induced expression of those cytokines, indicating the necessity of γδ T cells for expression induction by zoledronate. However, which types of cells were responsible for the production of those cytokines in blood remained unclear. As it is generally accepted that monocytes and macrophages are primary sources of inflammatory cytokines, CD14+ cells from PBMC were exposed to zoledronate in the presence of PBMC, which resulted in induced expression of mRNAs for IL-1ß, IL-6 and IFN-γ, but not for TNF-α. These results indicate that CD14+ cells are responsible, at least in part, for the production of IL-1ß, IL-6 and IFN-γ in blood exposed to zoledronate. This suggests that CD14+ cells play an essential role in the occurrence of APRs following N-BP administration.


Assuntos
Reação de Fase Aguda/induzido quimicamente , Conservadores da Densidade Óssea/toxicidade , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Linfócitos Intraepiteliais/efeitos dos fármacos , Receptores de Lipopolissacarídeos/metabolismo , Ativação Linfocitária/efeitos dos fármacos , Monócitos/efeitos dos fármacos , Ácido Zoledrônico/toxicidade , Reação de Fase Aguda/imunologia , Reação de Fase Aguda/metabolismo , Células Cultivadas , Técnicas de Cocultura , Citocinas/genética , Humanos , Linfócitos Intraepiteliais/imunologia , Linfócitos Intraepiteliais/metabolismo , Monócitos/imunologia , Monócitos/metabolismo
20.
FASEB J ; 34(12): 16224-16242, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33058343

RESUMO

Importin α proteins play a central role in the transport of cargo from the cytoplasm to the nucleus. In this study, we observed that male knock-out mice for importin α4, which is encoded by the Kpna4 gene (Kpna4-/- ), were subfertile and yielded smaller litter sizes than those of wild-type (WT) males. In contrast, mice lacking the closely related importin α3 (Kpna3-/- ) were fertile. In vitro fertilization and sperm motility assays demonstrated that sperm from Kpna4-/- mice had significantly reduced quality and motility. In addition, acrosome reaction was also impaired in Kpna4-/- mice. Transmission electron microscopy revealed striking defects, including abnormal head morphology and multiple axoneme structures in the flagella of Kpna4-/- mice. A five-fold increase in the frequency of abnormalities in Kpna4-/- mice compared to WT mice indicates the functional importance of importin α4 in normal sperm development. Moreover, Nesprin-2, which is a component of the linker of nucleus and cytoskeleton complex, was expressed at lower levels in sperm from Kpna4-/- mice and was localized with abnormal axonemes, suggesting incorrect formation of the nuclear membrane-cytoskeleton structure during spermiogenesis. Proteomics analysis of Kpna4-/- testis showed significantly altered expression of proteins related to sperm formation, which provided evidence that genetic loss of importin α4 perturbed chromatin status. Collectively, these findings indicate that importin α4 is critical for establishing normal sperm morphology in mice, providing new insights into male germ cell development by highlighting the requirement of importin α4 for normal fertility.


Assuntos
Fertilidade/genética , Infertilidade Masculina/genética , Carioferinas/genética , Motilidade dos Espermatozoides/genética , Espermatozoides/anormalidades , alfa Carioferinas/genética , Reação Acrossômica/genética , Animais , Flagelos/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Espermatogênese/genética , Testículo/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...