Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 16(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38275872

RESUMO

Breast cancer is predominantly an age-related disease, with aging serving as the most significant risk factor, compounded by germline mutations in high-risk genes like BRCA1/2. Aging induces architectural changes in breast tissue, particularly affecting luminal epithelial cells by diminishing lineage-specific molecular profiles and adopting myoepithelial-like characteristics. ELF5 is an important transcription factor for both normal breast and breast cancer development. This review focuses on the role of ELF5 in normal breast development, its altered expression throughout aging, and its implications in cancer. It discusses the lineage-specific expression of ELF5, its regulatory mechanisms, and its potential as a biomarker for breast-specific biological age and cancer risk.

2.
Cell Signal ; 113: 110958, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37935340

RESUMO

Microenvironment signals are potent determinants of cell fate and arbiters of tissue homeostasis, however understanding how different microenvironment factors coordinately regulate cellular phenotype has been experimentally challenging. Here we used a high-throughput microenvironment microarray comprised of 2640 unique pairwise signals to identify factors that support proliferation and maintenance of primary human mammary luminal epithelial cells. Multiple microenvironment factors that modulated luminal cell number were identified, including: HGF, NRG1, BMP2, CXCL1, TGFB1, FGF2, PDGFB, RANKL, WNT3A, SPP1, HA, VTN, and OMD. All of these factors were previously shown to modulate luminal cell numbers in painstaking mouse genetics experiments, or were shown to have a role in breast cancer, demonstrating the relevance and power of our high-dimensional approach to dissect key microenvironmental signals. RNA-sequencing of primary epithelial and stromal cell lineages identified the cell types that express these signals and the cognate receptors in vivo. Cell-based functional studies confirmed which effects from microenvironment factors were reproducible and robust to individual variation. Hepatocyte growth factor (HGF) was the factor most robust to individual variation and drove expansion of luminal cells via cKit+ progenitor cells, which expressed abundant MET receptor. Luminal cells from women who are genetically high risk for breast cancer had significantly more MET receptor and may explain the characteristic expansion of the luminal lineage in those women. In ensemble, our approach provides proof of principle that microenvironment signals that control specific cellular states can be dissected with high-dimensional cell-based approaches.


Assuntos
Neoplasias da Mama , Células Epiteliais , Feminino , Humanos , Animais , Camundongos , Células Epiteliais/metabolismo , Diferenciação Celular , Neoplasias da Mama/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Microambiente Tumoral
3.
Genome Res ; 33(8): 1229-1241, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37463750

RESUMO

A primary function of DNA methylation in mammalian genomes is to repress transposable elements (TEs). The widespread methylation loss that is commonly observed in cancer cells results in the loss of epigenetic repression of TEs. The aging process is similarly characterized by changes to the methylome. However, the impact of these epigenomic alterations on TE silencing and the functional consequences of this have remained unclear. To assess the epigenetic regulation of TEs in aging, we profiled DNA methylation in human mammary luminal epithelial cells (LEps)-a key cell lineage implicated in age-related breast cancers-from younger and older women. We report here that several TE subfamilies function as regulatory elements in normal LEps, and a subset of these display consistent methylation changes with age. Methylation changes at these TEs occurred at lineage-specific transcription factor binding sites, consistent with loss of lineage specificity. Whereas TEs mainly showed methylation loss, CpG islands (CGIs) that are targets of the Polycomb repressive complex 2 (PRC2) show a gain of methylation in aging cells. Many TEs with methylation loss in aging LEps have evidence of regulatory activity in breast cancer samples. We furthermore show that methylation changes at TEs impact the regulation of genes associated with luminal breast cancers. These results indicate that aging leads to DNA methylation changes at TEs that undermine the maintenance of lineage specificity, potentially increasing susceptibility to breast cancer.


Assuntos
Neoplasias da Mama , Epigênese Genética , Idoso , Feminino , Humanos , Envelhecimento/genética , Neoplasias da Mama/genética , Metilação de DNA , Elementos de DNA Transponíveis , Retroelementos
4.
Breast Cancer Res ; 25(1): 6, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36653787

RESUMO

BACKGROUND: A challenge in human mammary epithelial cell (HMEC) culture is sustaining the representation of competing luminal, myoepithelial, and progenitor lineages over time. As cells replicate in culture, myoepithelial cells come to dominate the composition of the culture with serial passaging. This drift in composition presents a challenge for studying luminal and progenitor cells, which are prospective cells of origin for most breast cancer subtypes. METHODS: We demonstrate the use of postconfluent culture on HMECs. Postconfluent culture entails culturing HMECs for 2-5 weeks without passaging but maintaining frequent feedings in low-stress M87A culture medium. In contrast, standard HMEC culture entails enzymatic subculturing every 3-5 days to maintain subconfluent density. RESULTS: When compared to standard HMEC culture, postconfluent culture yields increased proportions of luminal cells and c-Kit+ progenitor cells. Postconfluent cultures develop a distinct multilayered morphology with individual cells showing decreased physical deformability as compared to cells in standard culture. Gene expression analysis of postconfluent cells shows increased expression of lineage-specific markers and extracellular matrix components. CONCLUSIONS: Postconfluent culture is a novel, useful strategy for altering the lineage composition of HMECs, by increasing the proportional representation of luminal and progenitor cells. We speculate that postconfluent culture creates a microenvironment with cellular composition closer to the physiological state and eases the isolation of scarce cell subtypes. As such, postconfluent culture is a valuable tool for researchers using HMECs for breast cancer research.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Mama , Células Epiteliais/metabolismo , Microambiente Tumoral
5.
iScience ; 24(9): 103026, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34522866

RESUMO

Age is the major risk factor in most carcinomas, yet little is known about how proteomes change with age in any human epithelium. We present comprehensive proteomes comprised of >9,000 total proteins and >15,000 phosphopeptides from normal primary human mammary epithelia at lineage resolution from ten women ranging in age from 19 to 68 years. Data were quality controlled and results were biologically validated with cell-based assays. Age-dependent protein signatures were identified using differential expression analyses and weighted protein co-expression network analyses. Upregulation of basal markers in luminal cells, including KRT14 and AXL, were a prominent consequence of aging. PEAK1 was identified as an age-dependent signaling kinase in luminal cells, which revealed a potential age-dependent vulnerability for targeted ablation. Correlation analyses between transcriptome and proteome revealed age-associated loss of proteostasis regulation. Age-dependent proteome changes in the breast epithelium identified heretofore unknown potential therapeutic targets for reducing breast cancer susceptibility.

6.
Cancer Prev Res (Phila) ; 14(8): 779-794, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34140348

RESUMO

A robust breast cancer prevention strategy requires risk assessment biomarkers for early detection. We show that expression of ELF5, a transcription factor critical for normal mammary development, is downregulated in mammary luminal epithelia with age. DNA methylation of the ELF5 promoter is negatively correlated with expression in an age-dependent manner. Both ELF5 methylation and gene expression were used to build biological clocks to estimate chronological ages of mammary epithelia. ELF5 clock-based estimates of biological age in luminal epithelia from average-risk women were within three years of chronological age. Biological ages of breast epithelia from BRCA1 or BRCA2 mutation carriers, who were high risk for developing breast cancer, suggested they were accelerated by two decades relative to chronological age. The ELF5 DNA methylation clock had better performance at predicting biological age in luminal epithelial cells as compared with two other epigenetic clocks based on whole tissues. We propose that the changes in ELF5 expression or ELF5-proximal DNA methylation in luminal epithelia are emergent properties of at-risk breast tissue and constitute breast-specific biological clocks. PREVENTION RELEVANCE: ELF5 expression or DNA methylation level at the ELF5 promoter region can be used as breast-specific biological clocks to identify women at higher than average risk of breast cancer.


Assuntos
Neoplasias da Mama/diagnóstico , Neoplasias da Mama/genética , Mama/metabolismo , Relógios Circadianos/genética , Proteínas de Ligação a DNA/genética , Fatores de Transcrição/genética , Adulto , Biomarcadores Tumorais/genética , Mama/patologia , Neoplasias da Mama/patologia , Transformação Celular Neoplásica , Células Cultivadas , Metilação de DNA , Proteínas de Ligação a DNA/metabolismo , Detecção Precoce de Câncer/métodos , Feminino , Regulação Neoplásica da Expressão Gênica , Predisposição Genética para Doença/genética , Testes Genéticos/métodos , Humanos , Pessoa de Meia-Idade , Especificidade de Órgãos/genética , Regiões Promotoras Genéticas , Fatores de Transcrição/metabolismo
7.
iScience ; 24(4): 102253, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33796842

RESUMO

A long-standing constraint on organoid culture is the need to add exogenous substances to provide hydrogel matrix, which limits the study of fully human or fully native organoids. This paper introduces an approach to culture reconstituted mammary organoids without the impediment of exogenous matrix. We enclose organoids in nanoliter-scale, topologically enclosed, fluid compartments surrounded by agar. Organoids cultured in these "microcontainers" appear to secrete enough extracellular matrix to yield a self-sufficient microenvironment without exogenous supplements. In microcontainers, mammary organoids exhibit contractility and a high-level, physiological, myoepithelial (MEP) behavior that has not been previously reported in reconstituted organoids. The presence of contractility suggests that microcontainers elicit MEP functional differentiation, an important milestone. Microcontainers yield thousands of substantially identical and individually trackable organoids within a single culture vessel, enabling longitudinal studies and statistically powerful experiments, such as the evaluation of small effect sizes. Microcontainers open new doors for researchers who rely on organoid models.

8.
Nat Aging ; 1(9): 838-849, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-35187501

RESUMO

During aging in the human mammary gland, luminal epithelial cells lose lineage fidelity by expressing markers normally expressed in myoepithelial cells. We hypothesize that loss of lineage fidelity is a general manifestation of epithelia that are susceptible to cancer initiation. In the present study, we show that histologically normal breast tissue from younger women who are susceptible to breast cancer, as a result of harboring a germline mutation in BRCA1, BRCA2 or PALB2 genes, exhibits hallmarks of accelerated aging. These include proportionately increased luminal epithelial cells that acquired myoepithelial markers, decreased proportions of myoepithelial cells and a basal differentiation bias or failure of differentiation of cKit+ progenitors. High-risk luminal and myoepithelial cells are transcriptionally enriched for genes of the opposite lineage, inflammatory- and cancer-related pathways. We have identified breast-aging hallmarks that reflect a convergent biology of cancer susceptibility, regardless of the specific underlying genetic or age-dependent risk or the associated breast cancer subtype.


Assuntos
Neoplasias da Mama , Glândulas Mamárias Humanas , Humanos , Feminino , Envelhecimento/genética , Mama/patologia , Mutação em Linhagem Germinativa/genética , Neoplasias da Mama/genética , Proteína BRCA1/genética , Proteína BRCA2/genética
9.
iScience ; 23(11): 101649, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33103086

RESUMO

The receptor tyrosine kinase AXL is associated with epithelial plasticity in several solid tumors including breast cancer and AXL-targeting agents are currently in clinical trials. We hypothesized that AXL is a driver of stemness traits in cancer by co-option of a regulatory function normally reserved for stem cells. AXL-expressing cells in human mammary epithelial ducts co-expressed markers associated with multipotency, and AXL inhibition abolished colony formation and self-maintenance activities while promoting terminal differentiation in vitro. Axl-null mice did not exhibit a strong developmental phenotype, but enrichment of Axl + cells was required for mouse mammary gland reconstitution upon transplantation, and Axl-null mice had reduced incidence of Wnt1-driven mammary tumors. An AXL-dependent gene signature is a feature of transcriptomes in basal breast cancers and reduced patient survival irrespective of subtype. Our interpretation is that AXL regulates access to epithelial plasticity programs in MaSCs and, when co-opted, maintains acquired stemness in breast cancer cells.

10.
Curr Opin Cell Biol ; 54: 121-129, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29908481

RESUMO

Aging is driven by unavoidable entropic forces, physicochemical in nature, that damage the raw materials that constitute biological systems. Single cells experience and respond to stochastic physicochemical insults that occur either to the cells themselves or to their microenvironment, in a dynamic and reciprocal manner, leading to increased age-related cell-to-cell variation. We will discuss the biological mechanisms that integrate cell-to-cell variation across tissues resulting in stereotypical phenotypes of age.


Assuntos
Envelhecimento/fisiologia , Entropia , Especificidade de Órgãos , Humanos , Modelos Biológicos , Fenótipo , Fatores de Tempo
11.
Artigo em Inglês | MEDLINE | ID: mdl-29780657

RESUMO

The mechanical properties of cells change with their differentiation, chronological age, and malignant progression. Consequently, these properties may be useful label-free biomarkers of various functional or clinically relevant cell states. Here, we demonstrate mechano-node-pore sensing (mechano-NPS), a multi-parametric single-cell-analysis method that utilizes a four-terminal measurement of the current across a microfluidic channel to quantify simultaneously cell diameter, resistance to compressive deformation, transverse deformation under constant strain, and recovery time after deformation. We define a new parameter, the whole-cell deformability index (wCDI), which provides a quantitative mechanical metric of the resistance to compressive deformation that can be used to discriminate among different cell types. The wCDI and the transverse deformation under constant strain show malignant MCF-7 and A549 cell lines are mechanically distinct from non-malignant, MCF-10A and BEAS-2B cell lines, and distinguishes between cells treated or untreated with cytoskeleton-perturbing small molecules. We categorize cell recovery time, ΔTr, as instantaneous (ΔTr ~ 0 ms), transient (ΔTr ≤ 40ms), or prolonged (ΔTr > 40ms), and show that the composition of recovery types, which is a consequence of changes in cytoskeletal organization, correlates with cellular transformation. Through the wCDI and cell-recovery time, mechano-NPS discriminates between sub-lineages of normal primary human mammary epithelial cells with accuracy comparable to flow cytometry, but without antibody labeling. Mechano-NPS identifies mechanical phenotypes that distinguishes lineage, chronological age, and stage of malignant progression in human epithelial cells.

12.
Front Cell Dev Biol ; 6: 41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29719832

RESUMO

The existence of rare cancer cells that sporadically acquire drug-tolerance through epigenetic mechanisms is proposed as one mechanism that drives cancer therapy failure. Here we provide evidence that specific microenvironments impose non-sporadic expression of proteins related to epithelial plasticity and drug resistance. Microarrays of robotically printed combinatorial microenvironments of known composition were used to make cell-based functional associations between microenvironments, which were design-inspired by normal and tumor-burdened breast tissues, and cell phenotypes. We hypothesized that specific combinations of microenvironment constituents non-sporadically impose the induction of the AXL and cKIT receptor tyrosine kinase proteins, which are known to be involved in epithelial plasticity and drug-tolerance, in an isogenic human mammary epithelial cell (HMEC) malignant progression series. Dimension reduction analysis reveals type I collagen as a dominant feature, inducing expression of both markers in pre-stasis finite lifespan HMECs, and transformed non-malignant and malignant immortal cell lines. Basement membrane-associated matrix proteins, laminin-111 and type IV collagen, suppress AXL and cKIT expression in pre-stasis and non-malignant cells. However, AXL and cKIT are not suppressed by laminin-111 in malignant cells. General linear models identified key factors, osteopontin, IL-8, and type VIα3 collagen, which significantly upregulated AXL and cKIT, as well as a plasticity-related gene expression program that is often observed in stem cells and in epithelial-to-mesenchymal-transition. These factors are co-located with AXL-expressing cells in situ in normal and breast cancer tissues, and associated with resistance to paclitaxel. A greater diversity of microenvironments induced AXL and cKIT expression consistent with plasticity and drug-tolerant phenotypes in tumorigenic cells compared to normal or immortal cells, suggesting a reduced perception of microenvironment specificity in malignant cells. Microenvironment-imposed reprogramming could explain why resistant cells are seemingly persistent and rapidly adaptable to multiple classes of drugs. These results support the notion that specific microenvironments drive drug-tolerant cellular phenotypes and suggest a novel interventional avenue for preventing acquired therapy resistance.

13.
Aging (Albany NY) ; 9(10): 2026-2051, 2017 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-29016359

RESUMO

Luminal epithelial cells in the breast gradually alter gene and protein expression with age, appearing to lose lineage-specificity by acquiring myoepithelial-like characteristics. We hypothesize that the luminal lineage is particularly sensitive to microenvironment changes, and age-related microenvironment changes cause altered luminal cell phenotypes. To evaluate the effects of different microenvironments on the fidelity of epigenetically regulated luminal and myoepithelial gene expression, we generated a set of lineage-specific probes for genes that are controlled through DNA methylation. Culturing primary luminal cells under conditions that favor myoepithelial propogation led to their reprogramming at the level of gene methylation, and to a more myoepithelial-like expression profile. Primary luminal cells' lineage-specific gene expression could be maintained when they were cultured as bilayers with primary myoepithelial cells. Isogenic stromal fibroblast co-cultures were unable to maintain the luminal phenotype. Mixed-age luminal-myoepithelial bilayers revealed that luminal cells adopt transcription and methylation patterns consistent with the chronological age of the myoepithelial cells. We provide evidence that the luminal epithelial phenotype is exquisitely sensitive to microenvironment conditions, and that states of aging are cell non-autonomously communicated through microenvironment cues over at least one cell diameter.


Assuntos
Envelhecimento , Mama/citologia , Microambiente Celular , Células Epiteliais/citologia , Linhagem da Célula , Técnicas de Cocultura , Feminino , Humanos , Fenótipo , Transcriptoma
14.
Gerontology ; 62(4): 434-42, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26539838

RESUMO

Age is the greatest risk factor for breast cancer, but the reasons underlying this association are unclear. While there is undeniably a genetic component to all cancers, the accumulation of mutations with age is insufficient to explain the age-dependent increase in breast cancer incidence. In this viewpoint, we propose a multilevel framework to better understand the respective roles played by somatic mutation, microenvironment, and epigenetics making women more susceptible to breast cancer with age. The process of aging is associated with gradual breast tissue changes that not only corrupt the tumor-suppressive activity of normal tissue but also impose age-specific epigenetic changes that alter gene expression, thus reinforcing cellular phenotypes that are associated with a continuum of age-related tissue microenvironments. The evidence discussed here suggests that while the riddle of whether epigenetics drives microenvironmental changes, or whether changes in the microenvironment alter heritable cellular memory has not been solved, a path has been cleared enabling functional analysis leading to the prediction of key nodes in the network that link the microenvironment with the epigenome. The hypothesis that the accumulation of somatic mutations with age drives the age-related increase in breast cancer incidence, if correct, has a somewhat nihilistic conclusion, namely that cancers will be impossible to avoid. Alternatively, if microenvironment-driven epigenetic changes are the key to explaining susceptibility to age-related breast cancers, then there is hope that primary prevention is possible because epigenomes are relatively malleable.


Assuntos
Envelhecimento/genética , Neoplasias da Mama/genética , Mutação , Idoso , Envelhecimento/patologia , Neoplasias da Mama/patologia , Epigênese Genética , Feminino , Predisposição Genética para Doença , Humanos , Microambiente Tumoral/genética
15.
Front Cell Dev Biol ; 3: 13, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815289

RESUMO

Based on molecular features, breast cancers are grouped into intrinsic subtypes that have different prognoses and therapeutic response profiles. With increasing age, breast cancer incidence increases, with hormone receptor-positive and other luminal-like subtype tumors comprising a majority of cases. It is not known at what stage of tumor progression subtype specification occurs, nor how the process of aging affects the intrinsic subtype. We examined subtype markers in immortalized human mammary epithelial cell lines established following exposure of primary cultured cell strains to a two-step immortalization protocol that targets the two main barriers to immortality: stasis (stress-associated senescence) and replicative senescence. Cell lines derived from epithelial cells obtained from non-tumorous pre- and post-menopausal breast surgery tissues were compared. Additionally, comparisons were made between lines generated using two different genetic interventions to bypass stasis: transduction of either an shRNA that down-regulated p16(INK4A), or overexpressed constitutive active cyclin D1/CDK2. In all cases, the replicative senescence barrier was bypassed by transduction of c-Myc. Cells from all resulting immortal lines exhibited normal karyotypes. Immunofluorescence, flow cytometry, and gene expression analyses of lineage-specific markers were used to categorize the intrinsic subtypes of the immortalized lines. Bypassing stasis with p16 shRNA in young strains generated cell lines that were invariably basal-like, but the lines examined from older strains exhibited some luminal features such as keratin 19 and estrogen receptor expression. Overexpression of cyclin D1/CDK2 resulted in keratin 19 positive, luminal-like cell lines from both young and old strains, and the lines examined from older strains exhibited estrogen receptor expression. Thus age and the method of bypassing stasis independently influence the subtype of immortalized human mammary epithelial cells.

16.
Cell Rep ; 7(6): 1926-39, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24910432

RESUMO

Dysfunctional progenitor and luminal cells with acquired basal cell properties accumulate during human mammary epithelial aging for reasons not understood. Multipotent progenitors from women aged <30 years were exposed to a physiologically relevant range of matrix elastic modulus (stiffness). Increased stiffness causes a differentiation bias towards myoepithelial cells while reducing production of luminal cells and progenitor maintenance. Lineage representation in progenitors from women >55 years is unaffected by physiological stiffness changes. Efficient activation of Hippo pathway transducers YAP and TAZ is required for the modulus-dependent myoepithelial/basal bias in younger progenitors. In older progenitors, YAP and TAZ are activated only when stressed with extraphysiologically stiff matrices, which bias differentiation towards luminal-like phenotypes. In vivo YAP is primarily active in myoepithelia of younger breasts, but localization and activity increases in luminal cells with age. Thus, aging phenotypes of mammary epithelia may arise partly because alterations in Hippo pathway activation impair microenvironment-directed differentiation and lineage specificity.


Assuntos
Células Epiteliais/metabolismo , Glândulas Mamárias Humanas/citologia , Células-Tronco/citologia , Aciltransferases , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Fatores Etários , Diferenciação Celular/fisiologia , Células Epiteliais/citologia , Feminino , Humanos , Glândulas Mamárias Humanas/metabolismo , Mecanotransdução Celular/fisiologia , Pessoa de Meia-Idade , Fosfoproteínas/metabolismo , Células-Tronco/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Sinalização YAP
18.
Nat Genet ; 37(1): 31-40, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15608638

RESUMO

Mutations in MECP2 are associated with Rett syndrome, an X-linked neurodevelopmental disorder. To identify genes targeted by Mecp2, we sequenced 100 in vivo Mecp2-binding sites in mouse brain. Several sequences mapped to an imprinted gene cluster on chromosome 6, including Dlx5 and Dlx6, whose transcription was roughly two times greater in brains of Mecp2-null mice compared with those of wild-type mice. The maternally expressed gene DLX5 showed a loss of imprinting in lymphoblastoid cells from individuals with Rett syndrome. Because Dlx5 regulates production of enzymes that synthesize gamma-aminobutyric acid (GABA), loss of imprinting of Dlx5 may alter GABAergic neuron activity in individuals with Rett syndrome. In mouse brain, Dlx5 imprinting was relaxed, yet Mecp2-mediated silent-chromatin structure existed at the Dlx5-Dlx6 locus in brains of wild-type, but not Mecp2-null, mice. Mecp2 targeted histone deacetylase 1 to a sharply defined, approximately 1-kb region at the Dlx5-Dlx6 locus and promoted repressive histone methylation at Lys9 at this site. Chromatin immunoprecipitation-combined loop assays showed that Mecp2 mediated the silent chromatin-derived 11-kb chromatin loop at the Dlx5-Dlx6 locus. This loop was absent in chromatin of brains of Mecp2-null mice, and Dlx5-Dlx6 interacted with far distant sequences, forming distinct active chromatin-associated loops. These results show that formation of a silent-chromatin loop is a new mechanism underlying gene regulation by Mecp2.


Assuntos
Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Proteínas de Ligação a DNA/genética , Impressão Genômica , Proteínas de Homeodomínio/genética , Proteínas Repressoras/genética , Síndrome de Rett/genética , Animais , Cromatina/genética , Ilhas de CpG/fisiologia , Metilação de DNA , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína 2 de Ligação a Metil-CpG , Camundongos , Família Multigênica , Neurônios/metabolismo , Testes de Precipitina , Fatores de Transcrição , Ácido gama-Aminobutírico/metabolismo
19.
Nature ; 419(6907): 641-5, 2002 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-12374985

RESUMO

Eukaryotic chromosomes are organized inside the nucleus in such a way that only a subset of the genome is expressed in any given cell type, but the details of this organization are largely unknown. SATB1 ('special AT-rich sequence binding 1'), a protein found predominantly in thymocytes, regulates genes by folding chromatin into loop domains, tethering specialized DNA elements to an SATB1 network structure. Ablation of SATB1 by gene targeting results in temporal and spatial mis-expression of numerous genes and arrested T-cell development, suggesting that SATB1 is a cell-type specific global gene regulator. Here we show that SATB1 targets chromatin remodelling to the IL-2Ralpha ('interleukin-2 receptor alpha') gene, which is ectopically transcribed in SATB1 null thymocytes. SATB1 recruits the histone deacetylase contained in the NURD chromatin remodelling complex to a SATB1-bound site in the IL-2Ralpha locus, and mediates the specific deacetylation of histones in a large domain within the locus. SATB1 also targets ACF1 and ISWI, subunits of CHRAC and ACF nucleosome mobilizing complexes, to this specific site and regulates nucleosome positioning over seven kilobases. SATB1 defines a class of transcriptional regulators that function as a 'landing platform' for several chromatin remodelling enzymes and hence regulate large chromatin domains.


Assuntos
Cromatina/fisiologia , Regulação da Expressão Gênica , Proteínas de Ligação à Região de Interação com a Matriz/fisiologia , Receptores de Interleucina/genética , Sítios de Ligação , Cromatina/química , Cromatografia de Afinidade , Histona Desacetilases/fisiologia , Histonas/metabolismo , Humanos , Técnicas In Vitro , Subunidade alfa de Receptor de Interleucina-2 , Substâncias Macromoleculares , Complexo Mi-2 de Remodelação de Nucleossomo e Desacetilase , Conformação de Ácido Nucleico , Conformação Proteica , Proteínas Recombinantes/metabolismo , Timo/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...