Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
JMIR Public Health Surveill ; 3(2): e24, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28468748

RESUMO

BACKGROUND: Work on pharmacovigilance systems using texts from PubMed and Twitter typically target at different elements and use different annotation guidelines resulting in a scenario where there is no comparable set of documents from both Twitter and PubMed annotated in the same manner. OBJECTIVE: This study aimed to provide a comparable corpus of texts from PubMed and Twitter that can be used to study drug reports from these two sources of information, allowing researchers in the area of pharmacovigilance using natural language processing (NLP) to perform experiments to better understand the similarities and differences between drug reports in Twitter and PubMed. METHODS: We produced a corpus comprising 1000 tweets and 1000 PubMed sentences selected using the same strategy and annotated at entity level by the same experts (pharmacists) using the same set of guidelines. RESULTS: The resulting corpus, annotated by two pharmacists, comprises semantically correct annotations for a set of drugs, diseases, and symptoms. This corpus contains the annotations for 3144 entities, 2749 relations, and 5003 attributes. CONCLUSIONS: We present a corpus that is unique in its characteristics as this is the first corpus for pharmacovigilance curated from Twitter messages and PubMed sentences using the same data selection and annotation strategies. We believe this corpus will be of particular interest for researchers willing to compare results from pharmacovigilance systems (eg, classifiers and named entity recognition systems) when using data from Twitter and from PubMed. We hope that given the comprehensive set of drug names and the annotated entities and relations, this corpus becomes a standard resource to compare results from different pharmacovigilance studies in the area of NLP.

2.
Int J Med Inform ; 78(12): e39-46, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19501018

RESUMO

Protein-protein interaction (PPI) extraction is an important and widely researched task in the biomedical natural language processing (BioNLP) field. Kernel-based machine learning methods have been used widely to extract PPI automatically, and several kernels focusing on different parts of sentence structure have been published for the PPI task. In this paper, we propose a method to combine kernels based on several syntactic parsers, in order to retrieve the widest possible range of important information from a given sentence. We evaluate the method using a support vector machine (SVM), and we achieve better results than other state-of-the-art PPI systems on four out of five corpora. Further, we analyze the compatibility of the five corpora from the viewpoint of PPI extraction, and we see that some of them have small incompatibilities, but they can still be combined with a little effort.


Assuntos
Biologia Computacional/métodos , Processamento de Linguagem Natural , Mapeamento de Interação de Proteínas/métodos , Algoritmos , Bases de Dados como Assunto , Análise de Sequência de Proteína
3.
Bioinformatics ; 25(3): 394-400, 2009 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-19073593

RESUMO

MOTIVATION: While text mining technologies for biomedical research have gained popularity as a way to take advantage of the explosive growth of information in text form in biomedical papers, selecting appropriate natural language processing (NLP) tools is still difficult for researchers who are not familiar with recent advances in NLP. This article provides a comparative evaluation of several state-of-the-art natural language parsers, focusing on the task of extracting protein-protein interaction (PPI) from biomedical papers. We measure how each parser, and its output representation, contributes to accuracy improvement when the parser is used as a component in a PPI system. RESULTS: All the parsers attained improvements in accuracy of PPI extraction. The levels of accuracy obtained with these different parsers vary slightly, while differences in parsing speed are larger. The best accuracy in this work was obtained when we combined Miyao and Tsujii's Enju parser and Charniak and Johnson's reranking parser, and the accuracy is better than the state-of-the-art results on the same data. AVAILABILITY: The PPI extraction system used in this work (AkanePPI) is available online at http://www-tsujii.is.s.u-tokyo.ac.jp/downloads/downloads.cgi. The evaluated parsers are also available online from each developer's site.


Assuntos
Processamento de Linguagem Natural , Mapeamento de Interação de Proteínas/métodos , Algoritmos , Bases de Dados de Proteínas , Proteínas/química , Proteínas/metabolismo
4.
Pac Symp Biocomput ; : 616-27, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18229720

RESUMO

Recently, several text mining programs have reached a near-practical level of performance. Some systems are already being used by biologists and database curators. However, it has also been recognized that current Natural Language Processing (NLP) and Text Mining (TM) technology is not easy to deploy, since research groups tend to develop systems that cater specifically to their own requirements. One of the major reasons for the difficulty of deployment of NLP/TM technology is that re-usability and interoperability of software tools are typically not considered during development. While some effort has been invested in making interoperable NLP/TM toolkits, the developers of end-to-end systems still often struggle to reuse NLP/TM tools, and often opt to develop similar programs from scratch instead. This is particularly the case in BioNLP, since the requirements of biologists are so diverse that NLP tools have to be adapted and re-organized in a much more extensive manner than was originally expected. Although generic frameworks like UIMA (Unstructured Information Management Architecture) provide promising ways to solve this problem, the solution that they provide is only partial. In order for truly interoperable toolkits to become a reality, we also need sharable type systems and a developer-friendly environment for software integration that includes functionality for systematic comparisons of available tools, a simple I/O interface, and visualization tools. In this paper, we describe such an environment that was developed based on UIMA, and we show its feasibility through our experience in developing a protein-protein interaction (PPI) extraction system.


Assuntos
Biologia Computacional , Mapeamento de Interação de Proteínas/estatística & dados numéricos , Armazenamento e Recuperação da Informação , Processamento de Linguagem Natural
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA