Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
PLoS Pathog, v. 19, n. 5, e1011369, mai. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4900

RESUMO

The trematode parasite Schistosoma mansoni causes schistosomiasis, which affects over 200 million people worldwide. Schistosomes are dioecious, with egg laying depending on the females’ obligatory pairing with males. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein-coding potential that have been involved in other species with reproduction, stem cell maintenance, and drug resistance. In S. mansoni, we recently showed that the knockdown of one lncRNA affects the pairing status of these parasites. Here, we re-analyzed public RNA-Seq data from paired and unpaired adult male and female worms and their gonads, obtained from mixed-sex or single-sex cercariae infections, and found thousands of differentially expressed pairing-dependent lncRNAs among the 23 biological samples that were compared. The expression levels of selected lncRNAs were validated by RT-qPCR using an in vitro unpairing model. In addition, the in vitro silencing of three selected lncRNAs showed that knockdown of these pairing-dependent lncRNAs reduced cell proliferation in adult worms and their gonads, and are essential for female vitellaria maintenance, reproduction, and/or egg development. Remarkably, in vivo silencing of each of the three selected lncRNAs significantly reduced worm burden in infected mice by 26 to 35%. Whole mount in situ hybridization experiments showed that these pairing-dependent lncRNAs are expressed in reproductive tissues. These results show that lncRNAs are key components intervening in S. mansoni adult worm homeostasis, which affects pairing status and survival in the mammalian host, thus presenting great potential as new therapeutic target candidates.

2.
Mar Drugs ; 20(2)2022 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-35200640

RESUMO

Schistosomiasis has been controlled for more than 40 years with a single drug, praziquantel, and only one molluscicide, niclosamide, raising concern of the possibility of the emergence of resistant strains. However, the molecular targets for both agents are thus far unknown. Consequently, the search for lead compounds from natural sources has been encouraged due to their diverse structure and function. Our search for natural compounds with potential use in schistosomiasis control led to the identification of an algal species, Laurencia dendroidea, whose extracts demonstrated significant activity toward both Schistosoma mansoni parasites and their intermediate host snails Biomphalaria glabrata. In the present study, three seaweed-derived halogenated sesquiterpenes, (-)-elatol, rogiolol, and obtusol are proposed as potential lead compounds for the development of anthelminthic drugs for the treatment of and pesticides for the environmental control of schistosomiasis. The three compounds were screened for their antischistosomal and molluscicidal activities. The screening revealed that rogiolol exhibits significant activity toward the survival of adult worms, and that all three compounds showed activity against S. mansoni cercariae and B. glabrata embryos. Biomonitored fractioning of L. dendroidea extracts indicated elatol as the most active compound toward cercariae larvae and snail embryos.


Assuntos
Anti-Helmínticos , Laurencia , Moluscocidas , Sesquiterpenos , Animais , Anti-Helmínticos/isolamento & purificação , Anti-Helmínticos/farmacologia , Larva , Laurencia/química , Moluscocidas/isolamento & purificação , Moluscocidas/farmacologia , Schistosoma mansoni/efeitos dos fármacos , Esquistossomose/tratamento farmacológico , Sesquiterpenos/isolamento & purificação , Sesquiterpenos/farmacologia , Compostos de Espiro/isolamento & purificação , Compostos de Espiro/farmacologia
3.
Mar Drugs, v. 20, n. 2, 111, jan. 2022
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4149

RESUMO

Schistosomiasis has been controlled for more than 40 years with a single drug, praziquantel, and only one molluscicide, niclosamide, raising concern of the possibility of the emergence of resistant strains. However, the molecular targets for both agents are thus far unknown. Consequently, the search for lead compounds from natural sources has been encouraged due to their diverse structure and function. Our search for natural compounds with potential use in schistosomiasis control led to the identification of an algal species, Laurencia dendroidea, whose extracts demonstrated significant activity toward both Schistosoma mansoni parasites and their intermediate host snails Biomphalaria glabrata. In the present study, three seaweed-derived halogenated sesquiterpenes, (−)-elatol, rogiolol, and obtusol are proposed as potential lead compounds for the development of anthelminthic drugs for the treatment of and pesticides for the environmental control of schistosomiasis. The three compounds were screened for their antischistosomal and molluscicidal activities. The screening revealed that rogiolol exhibits significant activity toward the survival of adult worms, and that all three compounds showed activity against S. mansoni cercariae and B. glabrata embryos. Biomonitored fractioning of L. dendroidea extracts indicated elatol as the most active compound toward cercariae larvae and snail embryos.

4.
Nat Commun ; 12(1): 6181, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702841

RESUMO

The rhesus macaque provides a unique model of acquired immunity against schistosomes, which afflict >200 million people worldwide. By monitoring bloodstream levels of parasite-gut-derived antigen, we show that from week 10 onwards an established infection with Schistosoma mansoni is cleared in an exponential manner, eliciting resistance to reinfection. Secondary challenge at week 42 demonstrates that protection is strong in all animals and complete in some. Antibody profiles suggest that antigens mediating protection are the released products of developing schistosomula. In culture they are killed by addition of rhesus plasma, collected from week 8 post-infection onwards, and even more efficiently with post-challenge plasma. Furthermore, cultured schistosomula lose chromatin activating marks at the transcription start site of genes related to worm development and show decreased expression of genes related to lysosomes and lytic vacuoles involved with autophagy. Overall, our results indicate that enhanced antibody responses against the challenge migrating larvae mediate the naturally acquired protective immunity and will inform the route to an effective vaccine.


Assuntos
Schistosoma mansoni/fisiologia , Esquistossomose mansoni/imunologia , Animais , Anticorpos Anti-Helmínticos/imunologia , Anticorpos Anti-Helmínticos/farmacologia , Antígenos de Helmintos/imunologia , Modelos Animais de Doenças , Epigênese Genética/efeitos dos fármacos , Feminino , Genes de Helmintos/genética , Granulócitos/imunologia , Histonas/metabolismo , Interações Hospedeiro-Parasita/imunologia , Larva/efeitos dos fármacos , Larva/genética , Larva/crescimento & desenvolvimento , Linfócitos/imunologia , Macaca mulatta/imunologia , Macaca mulatta/parasitologia , Masculino , Contagem de Ovos de Parasitas , Reinfecção/imunologia , Esquistossomose mansoni/parasitologia
5.
Front Immunol ; 12: 624191, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33777004

RESUMO

In spite of several decades of research, an effective vaccine against schistosomiasis remains elusive. The radiation-attenuated (RA) cercarial vaccine is still the best model eliciting high protection levels, although the immune mechanisms have not yet been fully characterized. In order to identify genes and pathways underlying protection we investigated patterns of gene expression in PBMC and skin draining Lymph Nodes (LN) from mice using two exposure comparisons: vaccination with 500 attenuated cercariae versus infection with 500 normal cercariae; one versus three doses. Vaccinated mice were challenged with 120 normal parasites. Integration of PBMC and LN data from the infected group revealed early up-regulation of pathways associated with Th2 skewing and polarization of IgG antibody profiles. Additionally, hemostasis pathways were downregulated in infected mice, correlating with platelet reduction, potentially a mechanism to assist parasite migration through capillary beds. Conversely, up regulation of such mechanisms after vaccination may explain parasite blockade in the lungs. In contrast, a single exposure to attenuated parasites revealed early establishment of a Th1 bias (signaling of IL-1, IFN-γ; and Leishmania infection). Genes encoding chemokines and their receptors were more prominent in vaccinated mice, indicating an enhanced capacity for inflammation, potentially augmenting the inhibition of intravascular migration. Increasing the vaccinations from one to three did not dramatically elevate protection, but there was a clear shift towards antibody-mediated effectors. However, elements of the Th1 bias were still evident. Notable features after three vaccinations were markers of cytotoxicity (including IL-6 and NK cells) together with growth factors and their receptors (FGFR/VEGF/EGF) and the apoptosis pathway. Indeed, there is evidence for the development of anergy after three vaccinations, borne out by the limited responses detected in samples after challenge. We infer that persistence of a Th1 response puts a limit on expression of antibody-mediated mechanisms. This feature may explain the failure of multiple doses to drive protection towards sterile immunity. We suggest that the secretions of lung stage parasites would make a novel cohort of antigens for testing in protection experiments.


Assuntos
Hemostasia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Vacinas Protozoárias/administração & dosagem , Schistosoma mansoni/imunologia , Esquistossomose mansoni/prevenção & controle , Biologia de Sistemas , Animais , Cercárias/imunologia , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Hemostasia/genética , Interações Hospedeiro-Parasita , Peptídeos e Proteínas de Sinalização Intercelular/genética , Linfonodos/imunologia , Linfonodos/metabolismo , Linfonodos/parasitologia , Camundongos Endogâmicos C57BL , Análise em Microsséries , Vacinas Protozoárias/imunologia , Schistosoma mansoni/patogenicidade , Esquistossomose mansoni/imunologia , Esquistossomose mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Células Th1/imunologia , Células Th1/metabolismo , Células Th1/parasitologia , Equilíbrio Th1-Th2 , Células Th2/imunologia , Células Th2/metabolismo , Células Th2/parasitologia , Fatores de Tempo , Transcriptoma , Vacinação , Vacinas Atenuadas/administração & dosagem , Vacinas Atenuadas/imunologia
6.
Nat Commun, v. 12, 6181, out. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3981

RESUMO

The rhesus macaque provides a unique model of acquired immunity against schistosomes, which afflict >200 million people worldwide. By monitoring bloodstream levels of parasite-gut-derived antigen, we show that from week 10 onwards an established infection with Schistosoma mansoni is cleared in an exponential manner, eliciting resistance to reinfection. Secondary challenge at week 42 demonstrates that protection is strong in all animals and complete in some. Antibody profiles suggest that antigens mediating protection are the released products of developing schistosomula. In culture they are killed by addition of rhesus plasma, collected from week 8 post-infection onwards, and even more efficiently with post-challenge plasma. Furthermore, cultured schistosomula lose chromatin activating marks at the transcription start site of genes related to worm development and show decreased expression of genes related to lysosomes and lytic vacuoles involved with autophagy. Overall, our results indicate that enhanced antibody responses against the challenge migrating larvae mediate the naturally acquired protective immunity and will inform the route to an effective vaccine.

7.
Sci Rep, v. 11, 16816, ago. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3925

RESUMO

Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) is the most used, fast, and reproducible method to confirm large-scale gene expression data. The use of stable reference genes for the normalization of RT-qPCR assays is recognized worldwide. No systematic study for selecting appropriate reference genes for usage in RT-qPCR experiments comparing gene expression levels at different Schistosoma mansoni life-cycle stages has been performed. Most studies rely on genes commonly used in other organisms, such as actin, tubulin, and GAPDH. Therefore, the present study focused on identifying reference genes suitable for RT-qPCR assays across six S. mansoni developmental stages. The expression levels of 25 novel candidates that we selected based on the analysis of public RNA-Seq datasets, along with eight commonly used reference genes, were systematically tested by RT-qPCR across six developmental stages of S. mansoni (eggs, miracidia, cercariae, schistosomula, adult males and adult females). The stability of genes was evaluated with geNorm, NormFinder and RefFinder algorithms. The least stable candidate reference genes tested were actin, tubulin and GAPDH. The two most stable reference genes suitable for RT-qPCR normalization were Smp_101310 (Histone H4 transcription factor) and Smp_196510 (Ubiquitin recognition factor in ER-associated degradation protein 1). Performance of these two genes as normalizers was successfully evaluated with females maintained unpaired or paired to males in culture for 8 days, or with worm pairs exposed for 16 days to double-stranded RNAs to silence a protein-coding gene. This study provides reliable reference genes for RT-qPCR analysis using samples from six different S. mansoni life-cycle stages.

8.
Marine Drugs, v. 19, n. 5, 234, abr. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3693

RESUMO

Schistosomiasis is a parasitic disease that affects more than 250 million people. The treatment is limited to praziquantel and the control of the intermediate host with the highly toxic molluscicidal niclosamide. Marine algae are a poorly explored and promising alternative that can provide lead compounds, and the use of multivariate analysis could contribute to quicker discovery. As part of our search for new natural compounds with which to control schistosomiasis, we screened 45 crude extracts obtained from 37 Brazilian seaweed species for their molluscicidal activity against Biomphalaria glabrata embryos and schistosomicidal activities against Schistosoma mansoni. Two sets of extracts were taxonomically grouped for metabolomic analysis. The extracts were analyzed by GC–MS, and the data were subjected to Pattern Hunter and Pearson correlation tests. Overall, 22 species (60%) showed activity in at least one of the two models. Multivariate analysis pointed towards 3 hits against B. glabrata veliger embryos in the Laurencia/Laurenciella set, 5 hits against B. glabrata blastula embryos, and 31 against S. mansoni in the Ochrophyta set. Preliminary annotations suggested some compounds such as triquinane alcohols, prenylated guaianes, dichotomanes, and xenianes. Despite the putative identification, this work presents potential candidates and can guide future isolation and identification

9.
Front Immunol, v. 12, 624191, mar. 2021
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3648

RESUMO

In spite of several decades of research, an effective vaccine against schistosomiasis remains elusive. The radiation-attenuated (RA) cercarial vaccine is still the best model eliciting high protection levels, although the immune mechanisms have not yet been fully characterized. In order to identify genes and pathways underlying protection we investigated patterns of gene expression in PBMC and skin draining Lymph Nodes (LN) from mice using two exposure comparisons: vaccination with 500 attenuated cercariae versus infection with 500 normal cercariae; one versus three doses. Vaccinated mice were challenged with 120 normal parasites. Integration of PBMC and LN data from the infected group revealed early up-regulation of pathways associated with Th2 skewing and polarization of IgG antibody profiles. Additionally, hemostasis pathways were downregulated in infected mice, correlating with platelet reduction, potentially a mechanism to assist parasite migration through capillary beds. Conversely, up regulation of such mechanisms after vaccination may explain parasite blockade in the lungs. In contrast, a single exposure to attenuated parasites revealed early establishment of a Th1 bias (signaling of IL-1, IFN-γ; and Leishmania infection). Genes encoding chemokines and their receptors were more prominent in vaccinated mice, indicating an enhanced capacity for inflammation, potentially augmenting the inhibition of intravascular migration. Increasing the vaccinations from one to three did not dramatically elevate protection, but there was a clear shift towards antibody-mediated effectors. However, elements of the Th1 bias were still evident. Notable features after three vaccinations were markers of cytotoxicity (including IL-6 and NK cells) together with growth factors and their receptors (FGFR/VEGF/EGF) and the apoptosis pathway. Indeed, there is evidence for the development of anergy after three vaccinations, borne out by the limited responses detected in samples after challenge. We infer that persistence of a Th1 response puts a limit on expression of antibody-mediated mechanisms. This feature may explain the failure of multiple doses to drive protection towards sterile immunity. We suggest that the secretions of lung stage parasites would make a novel cohort of antigens for testing in protection experiments.

10.
Parasit. Vectors. ; 13: 140, 2020.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17540

RESUMO

Background: Schistosomiasis chemotherapy is largely based on praziquantel (PZQ). Although PZQ is very safe and tolerable, it does not prevent reinfection and emerging resistance is a primary concern. Recent studies have shown that the targeting of epigenetic machinery in Schistosoma mansoni may result in severe alterations in parasite development, leading to death. This new route for drug discovery in schistosomiasis has focused on classes of histone deacetylases (HDACs) and histone acetyltransferases (HATs) as epigenetic drug targets. Schistosoma histone demethy-lases also seem to be important in the transition of cercariae into schistosomula, as well as sexual diferentiation in adult worms. Methods: The Target-Pathogen database and molecular docking assays were used to prioritize the druggability of S. mansoni histone demethylases. The transcription profle of Smp_03400 was re-analyzed using available databases. The efect of GSK-J4 inhibitor in schistosomula and adult worms’ motility/viability/oviposition was assessed by in vitro assays. Ultrastructural analysis was performed on adult worms exposed to GSK-J4 by scanning electron microscopy, while internal structures and muscle fber integrity was investigated by confocal microscopy after Langeron's carmine or phalloidin staining. Results: The present evaluation of the potential druggability of 14 annotated S. mansoni demethylase enzymes identifed the S. mansoni ortholog of human KDM6A/UTX (Smp_034000) as the most suitable druggable target. In silico analysis and molecular modeling indicated the potential for cofactor displacement by the chemical probe GSK-J4. Our re-analysis of transcriptomic data revealed that Smp_034000 expression peaks at 24 h in newly transformed schisto somula and 5-week-old adult worms. Moreover, this gene was highly expressed in the testes of mature male worms compared to the rest of the parasite body. In in vitro schistosome cultures, treatment with GSK-J4 produced strikingefects on schistosomula mortality and adult worm motility and mortality, as well as egg oviposition, in a dose- and time-dependent manner. Unexpectedly, western blot assays did not demonstrate overall modulation of H3K27me3 levels in response to GSK-J4. Confocal and scanning electron microscopy revealed the loss of original features in muscle fibers and alterations in cell-cell contact following GSK-J4 treatment. Conclusions GSK-J4 presents promising potential for antischistosomal control; however, the underlying mechanisms warrant further investigation.

11.
Sci Rep, v. 10, 21565, dez. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3407

RESUMO

Schistosoma mansoni is a flatworm that causes schistosomiasis, a neglected tropical disease that affects more than 200 million people worldwide. There is only one drug indicated for treatment, praziquantel, which may lead to parasite resistance emergence. The ribonucleoside analogue 5-azacytidine (5-AzaC) is an epigenetic drug that inhibits S. mansoni oviposition and ovarian development through interference with parasite transcription, translation and stem cell activities. Therefore, studying the downstream pathways affected by 5-AzaC in S. mansoni may contribute to the discovery of new drug targets. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nucleotides with low or no protein coding potential that have been involved in reproduction, stem cell maintenance and drug resistance. We have recently published a catalog of lncRNAs expressed in S. mansoni life-cycle stages, tissues and single cells. However, it remains largely unknown if lncRNAs are responsive to epigenetic drugs in parasites. Here, we show by RNA-Seq re-analyses that hundreds of lncRNAs are differentially expressed after in vitro 5-AzaC treatment of S. mansoni females, including intergenic, antisense and sense lncRNAs. Many of these lncRNAs belong to co-expression network modules related to male metabolism and are also differentially expressed in unpaired compared with paired females and ovaries. Half of these lncRNAs possess histone marks at their genomic loci, indicating regulation by histone modification. Among a selected set of 8 lncRNAs, half of them were validated by RT-qPCR as differentially expressed in females, and some of them also in males. Interestingly, these lncRNAs are also expressed in other life-cycle stages. This study demonstrates that many lncRNAs potentially involved with S. mansoni reproductive biology are modulated by 5-AzaC and sheds light on the relevance of exploring lncRNAs in response to drug treatments in parasites.

12.
Parasit Vectors, v. 13, 140, mar. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2975

RESUMO

Background: Schistosomiasis chemotherapy is largely based on praziquantel (PZQ). Although PZQ is very safe and tolerable, it does not prevent reinfection and emerging resistance is a primary concern. Recent studies have shown that the targeting of epigenetic machinery in Schistosoma mansoni may result in severe alterations in parasite development, leading to death. This new route for drug discovery in schistosomiasis has focused on classes of histone deacetylases (HDACs) and histone acetyltransferases (HATs) as epigenetic drug targets. Schistosoma histone demethy-lases also seem to be important in the transition of cercariae into schistosomula, as well as sexual diferentiation in adult worms. Methods: The Target-Pathogen database and molecular docking assays were used to prioritize the druggability of S. mansoni histone demethylases. The transcription profle of Smp_03400 was re-analyzed using available databases. The efect of GSK-J4 inhibitor in schistosomula and adult worms’ motility/viability/oviposition was assessed by in vitro assays. Ultrastructural analysis was performed on adult worms exposed to GSK-J4 by scanning electron microscopy, while internal structures and muscle fber integrity was investigated by confocal microscopy after Langeron's carmine or phalloidin staining. Results: The present evaluation of the potential druggability of 14 annotated S. mansoni demethylase enzymes identifed the S. mansoni ortholog of human KDM6A/UTX (Smp_034000) as the most suitable druggable target. In silico analysis and molecular modeling indicated the potential for cofactor displacement by the chemical probe GSK-J4. Our re-analysis of transcriptomic data revealed that Smp_034000 expression peaks at 24 h in newly transformed schisto somula and 5-week-old adult worms. Moreover, this gene was highly expressed in the testes of mature male worms compared to the rest of the parasite body. In in vitro schistosome cultures, treatment with GSK-J4 produced strikingefects on schistosomula mortality and adult worm motility and mortality, as well as egg oviposition, in a dose- and time-dependent manner. Unexpectedly, western blot assays did not demonstrate overall modulation of H3K27me3 levels in response to GSK-J4. Confocal and scanning electron microscopy revealed the loss of original features in muscle fibers and alterations in cell-cell contact following GSK-J4 treatment. Conclusions GSK-J4 presents promising potential for antischistosomal control; however, the underlying mechanisms warrant further investigation.

13.
Mol. Biochem. Parasitol. ; 221: p. 23-31, 2018.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15224

RESUMO

Schistosomiasis is a neglected tropical disease caused by trematodes of the genus Schistosoma which have a complex life cycle characterized by an asexual multiplication phase in the snail intermediate host and a sexual reproduction phase in the mammalian definitive host. The initial steps of the human host infection involve the secretion of proteins contained in the acetabular glands of cercariae that promote parasite adhesion and proteolysis of the skin layers. Herein, we performed a functional analysis of SmVAL18, identified as one of the three SCP/TAPS proteins constituent of cercarial secretions. We evaluated the SmVAL18 binding to immobilized macromolecules of the extracellular matrix (ECM) and to plasma components. Recombinant protein, expressed in E. coli, was found to maintain an ordered secondary structure typical of the SCP/TAPS domain after purification. Expression of native SmVAL18 protein was verified to be restricted to cercariae and 3-h schistosomula stages; furthermore, the protein was observed in the corresponding secretions, confirming that SmVAL18 is secreted during the first 3 h of in vitro culture. rSmVAL18 was able to interact specifically with plasminogen (PLG) and enhance its conversion into plasmin in the presence of the urokinase-type plasminogen activator (uPA). Protein homology modelling suggested that the PLG-rSmVAL18 interaction was mediated by lysine residues of the protein. This was supported by in vitro data using the lysine analogue, 6-aminocaproic acid (ACA), which abolished the interaction. Finally, our results showed that both cercariae and 3-h schistosomula, as well as their corresponding secretions, exhibited the capacity to bind PLG and enhance its conversion into plasmin in vitro in the same way as observed for the recombinant protein. In conclusion, our findings show that SmVAL18 is a novel PLG-binding protein secreted during the early stages of the mammalian-host infection.

14.
Mol Biochem Parasitol, v. 221, p. 23-31, abr. 2018
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2493

RESUMO

Schistosomiasis is a neglected tropical disease caused by trematodes of the genus Schistosoma which have a complex life cycle characterized by an asexual multiplication phase in the snail intermediate host and a sexual reproduction phase in the mammalian definitive host. The initial steps of the human host infection involve the secretion of proteins contained in the acetabular glands of cercariae that promote parasite adhesion and proteolysis of the skin layers. Herein, we performed a functional analysis of SmVAL18, identified as one of the three SCP/TAPS proteins constituent of cercarial secretions. We evaluated the SmVAL18 binding to immobilized macromolecules of the extracellular matrix (ECM) and to plasma components. Recombinant protein, expressed in E. coli, was found to maintain an ordered secondary structure typical of the SCP/TAPS domain after purification. Expression of native SmVAL18 protein was verified to be restricted to cercariae and 3-h schistosomula stages; furthermore, the protein was observed in the corresponding secretions, confirming that SmVAL18 is secreted during the first 3 h of in vitro culture. rSmVAL18 was able to interact specifically with plasminogen (PLG) and enhance its conversion into plasmin in the presence of the urokinase-type plasminogen activator (uPA). Protein homology modelling suggested that the PLG-rSmVAL18 interaction was mediated by lysine residues of the protein. This was supported by in vitro data using the lysine analogue, 6-aminocaproic acid (ACA), which abolished the interaction. Finally, our results showed that both cercariae and 3-h schistosomula, as well as their corresponding secretions, exhibited the capacity to bind PLG and enhance its conversion into plasmin in vitro in the same way as observed for the recombinant protein. In conclusion, our findings show that SmVAL18 is a novel PLG-binding protein secreted during the early stages of the mammalian-host infection.

15.
Parasit Vectors ; 10(1): 223, 2017 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-28482920

RESUMO

BACKGROUND: Schistosoma mansoni venom allergen-like protein (SmVAL) is a gene family composed of 29 members divided into group 1 encoding proteins potentially secreted, and group 2 encoding intracellular components. Some members were found to be upregulated in the transition of germ ball - cercariae - day 3 schistosomula, suggesting that group 1 SmVAL proteins are associated with the invasion of the human host, although their functions are not completely established. Recently, we have described the localization of SmVAL7 (group 1) and SmVAL6 (group 2) transcripts in the oesophageal gland and in the oral and ventral suckers of adult parasites, respectively. The expression patterns of the two genes suggest that SmVAL7 protein plays a role in the blood-feeding process while SmVAL6 is associated with the parasite attachment and movement in the vasculature. In this way, searching for additional secreted SmVAL proteins that could be involved in key processes from skin penetration to the beginning of blood-feeding, we investigated the tissue localization of SmVAL4, 13, 16 and 24 by whole-mount in situ hybridization (WISH). RESULTS: We report here the localization of group 1 SmVAL4 and 24 transcripts in the pre-acetabular glands of developing germ balls. Time course experiments of in vitro cultured schistosomula after cercariae transformation demonstrated that SmVAL4 protein is secreted during the first 3 h of in vitro culture, correlating with the emptying of acetabular glands as documented by confocal microscopy. In addition, the localization of SmVAL13 transcripts in adult male anterior oesophageal gland suggests that the respective protein may be involved in the first steps of the blood-feeding process. SmVAL16 was localized close to the neural ganglia and requires further investigation. CONCLUSIONS: Our findings demonstrate that SmVAL proteins have localizations that place them in strategic positions to be considered as potential vaccine candidates as some members are exposed to interaction with the immune system and may participate in key processes of mammalian invasion and parasitism establishment.


Assuntos
Antígenos de Helmintos/genética , Expressão Gênica , Estágios do Ciclo de Vida/genética , Schistosoma mansoni/genética , Acetabularia/genética , Alérgenos/química , Alérgenos/genética , Animais , Cercárias/genética , Interações Hospedeiro-Patógeno/genética , Humanos , Hibridização In Situ/métodos , Schistosoma mansoni/química , Schistosoma mansoni/crescimento & desenvolvimento , Schistosoma mansoni/fisiologia , Caramujos/parasitologia , Regulação para Cima , Peçonhas/química
16.
Parasites Vectors ; 10: 223, 2017.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15204

RESUMO

Background: Schistosoma mansoni venom allergen-like protein (SmVAL) is a gene family composed of 29 members divided into group 1 encoding proteins potentially secreted, and group 2 encoding intracellular components. Some members were found to be upregulated in the transition of germ ball - cercariae - day 3 schistosomula, suggesting that group 1 SmVAL proteins are associated with the invasion of the human host, although their functions are not completely established. Recently, we have described the localization of SmVAL7 (group 1) and SmVAL6 (group 2) transcripts in the oesophageal gland and in the oral and ventral suckers of adult parasites, respectively. The expression patterns of the two genes suggest that SmVAL7 protein plays a role in the blood-feeding process while SmVAL6 is associated with the parasite attachment and movement in the vasculature. In this way, searching for additional secreted SmVAL proteins that could be involved in key processes from skin penetration to the beginning of blood-feeding, we investigated the tissue localization of SmVAL4, 13, 16 and 24 by whole-mount in situ hybridization (WISH). Results: We report here the localization of group 1 SmVAL4 and 24 transcripts in the pre-acetabular glands of developing germ balls. Time course experiments of in vitro cultured schistosomula after cercariae transformation demonstrated that SmVAL4 protein is secreted during the first 3 h of in vitro culture, correlating with the emptying of acetabular glands as documented by confocal microscopy. In addition, the localization of SmVAL13 transcripts in adult male anterior oesophageal gland suggests that the respective protein may be involved in the first steps of the blood-feeding process. SmVAL16 was localized close to the neural ganglia and requires further investigation. Conclusions: Our findings demonstrate that SmVAL proteins have localizations that place them in strategic positions to be considered as potential vaccine candidates as some members are exposed to interaction with the immune system and may participate in key processes of mammalian invasion and parasitism establishment.

17.
Acta Trop ; 140: 193-201, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25240208

RESUMO

The Schistosoma mansoni transcriptome revealed new members of the dynein light chain family (DLC/LC8). The antigenicity and immunogenicity of these proteins, and their potential as vaccine candidates were investigated. Two DLC genes (DLC12_JI392413.1 and DLC13_JI387686.1) were cloned and the recombinant proteins produced in E. coli. The immunization of mice with the rDLCs, using alhydrogel as adjuvant, resulted in high titers of antibodies, indicated that these proteins are highly immunogenic. The anti-DLCs antibodies presented cross reactivity with both recombinant antigens and also recognized proteins from S. mansoni adult worm extracts. The DLC12 and DLC13 immunized animals were challenged by infection with cercariae and a protective profile was observed in three different assays, with a significant decreased in worm burden, of 43% and 51% respectively, when compared to the non-vaccinated group. The granulomas formation due to egg retention in the hepatic tissues was evaluated 45 days after infection. Smaller granulomas were observed in the liver of DLC immunized animals, up to 70% reduction in comparison to the granulomas size in the non-vaccinated animals. Fifty-five days after infection, the average size of the hepatic granulomas was still 25-35% smaller in the DLCs vaccinated groups. The interference of DLC immunization on the hepatic granuloma formation may reflect the lower worm burden and consequent decrease on the number of eggs retained in the liver, resulting in lower pro-inflammatory level in the tissue. The protective effect of DLCs immunization, decreasing the worm burden and delaying the rate of granuloma formation, suggests that these antigens should be further studied as potential vaccine candidates.


Assuntos
Antígenos de Helmintos/imunologia , Schistosoma mansoni/imunologia , Esquistossomose mansoni/prevenção & controle , Animais , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Vacinação , Vacinas de DNA/imunologia
18.
Acta Trop ; 140: p.193-201, 2014.
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib13409
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...