Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurobiol ; 2023 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-38153682

RESUMO

Motopsin, a serine protease encoded by PRSS12, is secreted by neuronal cells into the synaptic clefts in an activity-dependent manner, where it induces synaptogenesis by modulating Na+/K+-ATPase activity. In humans, motopsin deficiency leads to severe intellectual disability and, in mice, it disturbs spatial memory and social behavior. In this study, we investigated mice that overexpressed motopsin in the forebrain using the Tet-Off system (DTG-OE mice). The elevated agrin cleavage or the reduced Na+/K+-ATPase activity was not detected. However, motopsin overexpression led to a reduction in spine density in hippocampal CA1 basal dendrites. While motopsin overexpression decreased the ratio of mature mushroom spines in the DG, it increased the ratio of immature thin spines in CA1 apical dendrites. Female DTG-OE mice showed elevated locomotor activity in their home cages. DTG-OE mice showed aberrant behaviors, such as delayed latency to the target hole in the Barnes maze test and prolonged duration of sniffing objects in the novel object recognition test (NOR), although they retained memory comparable to that of TRE-motopsin littermates, which normally express motopsin. After NOR, c-Fos-positive cells increased in the dentate gyrus (DG) of DTG-OE mice compared with that of DTG-SO littermates, in which motopsin overexpression was suppressed by the administration of doxycycline, and TRE-motopsin littermates. Notably, the numbers of doublecortin- and 5-bromo-2'-deoxyuridine-labeled cells significantly increased in the DG of DTG-OE mice, suggesting increased adult neurogenesis. Importantly, our results revealed a new function in addition to modulating neuronal responsiveness and spine morphology in the DG: the regulation of neurogenesis.

2.
Neurosci Lett ; 763: 136181, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34416345

RESUMO

Motopsin is a serine protease that plays a crucial role in synaptic functions. Loss of motopsin function causes severe intellectual disability in humans. In this study, we evaluated the role of motopsin in the neuropathological development of cognitive impairments following chemotherapy, also known as chemobrain. Motopsin knockout (KO) and wild-type (WT) mice were intravenously injected with doxorubicin (Dox) or saline four times every 8 days and were evaluated for open field, novel object recognition, and passive avoidance tests. Parvalbumin-positive neurons in the hippocampus were immunohistochemically analyzed. Dox administration significantly decreased the total distance in the open field test in both WT and motopsin KO mice without affecting the duration spent in the center square. A significant interaction between the genotype and drug treatment was detected in the recognition index (the rate to investigate a novel object) in the novel object recognition test, although Dox treatment did not affect the total investigation time. Additionally, Dox treatment significantly decreased the recognition index in WT mice, whereas it tended to increase the recognition index in motopsin KO mice. Dox treatment did not affect the latency to enter a dark compartment in either WT or motopsin KO mice in the passive avoidance test. Interestingly, Dox treatment increased the parvalbumin-positive neurons in the stratum oriens of the hippocampus CA1 region of only WT mice, not motopsin KO mice. Our data suggest that motopsin deficiency imparted partial insensitivity to Dox-induced hippocampal impairments. Alternatively, motopsin may contribute to the neuropathology of chemobrain.


Assuntos
Região CA1 Hipocampal/patologia , Região CA3 Hipocampal/patologia , Comprometimento Cognitivo Relacionado à Quimioterapia/patologia , Doxorrubicina/efeitos adversos , Serina Endopeptidases/deficiência , Animais , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/efeitos dos fármacos , Região CA3 Hipocampal/efeitos dos fármacos , Comprometimento Cognitivo Relacionado à Quimioterapia/etiologia , Modelos Animais de Doenças , Humanos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Knockout , Lipofuscinoses Ceroides Neuronais/genética , Lipofuscinoses Ceroides Neuronais/patologia , Neurônios/efeitos dos fármacos , Neurônios/patologia , Parvalbuminas/metabolismo , Serina Endopeptidases/genética
3.
Behav Brain Res ; 315: 83-93, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27522019

RESUMO

Traumatic events such as natural disasters, violent crimes, tragic accidents, and war, can have devastating impacts on social relationships, including marital partnerships. We developed a single prolonged stress (SPS) paradigm, which consisted of restraint, forced swimming, and ether anesthesia, to establish an animal model relevant to post-traumatic stress disorder. We applied a SPS paradigm to a monogamous rodent, the prairie vole (Microtus ochrogaster) in order to determine whether a traumatic event affects the establishment of pair bonds. We did not detect effects of the SPS treatment on anhedonic or anxiety-like behavior. Sham-treated male voles huddled with their partner females, following a 6day cohabitation, for a longer duration than with a novel female, indicative of a pair bond. In contrast, SPS-treated voles indiscriminately huddled with the novel and partner females. Interestingly, the impairment of pair bonding was rescued by oral administration of paroxetine, a selective serotonin reuptake inhibitor (SSRI), after the SPS treatment. Immunohistochemical analyses revealed that oxytocin immunoreactivity (IR) was significantly decreased in the supraoptic nucleus (SON), but not in the paraventricular nucleus (PVN), 7days after SPS treatment, and recovered 14days after SPS treatment. After the presentation of a partner female, oxytocin neurons labeled with Fos IR was significantly increased in SPS-treated voles compared with sham-treated voles regardless of paroxetine administration. Our results suggest that traumatic events disturb the formation of pair bond possibly through an interaction with the serotonergic system, and that SSRIs are candidates for the treatment of social problems caused by traumatic events. Further, a vole SPS model may be useful for understanding mechanisms underlying the impairment of social bonding by traumatic events.


Assuntos
Ligação do Par , Transtornos de Estresse Pós-Traumáticos/fisiopatologia , Animais , Arvicolinae , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Comportamento Exploratório/efeitos dos fármacos , Feminino , Masculino , Neurônios/metabolismo , Ocitocina/metabolismo , Paroxetina/uso terapêutico , Receptores de Glucocorticoides/metabolismo , Receptores de Vasopressinas/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Núcleo Supraóptico/patologia , Fatores de Tempo , Tirosina 3-Mono-Oxigenase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...